首页 > 论文 > 光学学报 > 37卷 > 9期(pp:909001--1)

基于一维光栅函数的纯相位全息编码

Phase-Only Hologram Encoding Based on One-Dimensional Grating Function

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

提出一种基于一维光栅函数进行纯相位编码的方法, 该方法以双相位全息编码技术为基础, 将复振幅图像编码成纯相位图, 并将编码得到的相位图直接加载到相位型空间光调制器上进行光学重建。在重建过程中, 用一个有低通滤波器的4-f系统选择衍射级次, 并选用一级衍射分量进行重建。一维光栅函数编码可以提高一级衍射分量所能获得的能量。因为没有相位元件零级信息的影响, 重建图像的质量得到了提升。数值模拟和实验结果证明, 该方法可以有效重构编码复杂物体的振幅和相位, 该方法得到的一级衍射能量比二维棋盘格函数编码得到的一级衍射能量高。

Abstract

A phase-only encoding method based on one-dimensional grating function is proposed. Based on double-phase hologram encoding technique, the complex amplitude image is encoded into a phase-only image, and then the image is directly loaded into the spatial light modulator for image reconstruction. During the optical reconstruction, a 4-f system with a low pass filter is used to select the diffraction order, and the first order diffraction component is chosen for reconstruction. The one-dimensional grating encoding function can improve the energy of the first order diffraction component. The quality of the reconstructed images is increased because there is no interference from zero-order information of the phase element. The numerical and experimental results show that the encoded amplitude and phase of the complex object can be reconstructed effectively, and the power of the first order diffraction got from the proposed method is higher than that of two-dimensional checkboard encoding function.

投稿润色
补充资料

中图分类号:O438

DOI:10.3788/aos201737.0909001

所属栏目:全息

基金项目:国家自然科学基金(61377005)、上海市自然科学基金(17ZR1433800)

收稿日期:2017-04-12

修改稿日期:2017-05-08

网络出版日期:--

作者单位    点击查看

王彩红:上海大学机电工程与自动化学院, 上海 200072中国科学院上海光学精密机械研究所, 上海 201800
陈 妮:中国科学院上海光学精密机械研究所, 上海 201800
于瀛洁:上海大学机电工程与自动化学院, 上海 200072
司徒国海:中国科学院上海光学精密机械研究所, 上海 201800

联系人作者:王彩红(caihong0504@qq.com)

备注:王彩红(1990-), 女, 硕士研究生, 主要从事计算全息方面的研究。

【1】Slinger C, Cameron C, Stanley M. Computer-generated holography as a generic display technology[J]. Computer, 2005, 38(8): 46-53.

【2】Kim S C, Kim E S. Fast computation of hologram patterns of a 3D object using run-length encoding and novel look-up table methods[J]. Applied Optics, 2009, 48(6): 1030-1041.

【3】Kim S C, Hwang D C, Lee D H, et al. Computer-generated holograms of a real three-dimensional object based on stereoscopic video images[J]. Applied Optics, 2006, 45(22): 5669-5676.

【4】Chen N, Park J H, Kim N. Parameter analysis of integral Fourier hologram and its resolution enhancement[J]. Optics Express, 2010, 18(3): 2152-2167.

【5】Chen N, Yeom J, Jung J H, et al. Resolution comparison between integral-imaging-based hologram synthesis methods using rectangular and hexagonal lens arrays[J]. Optics Express, 2011, 19(27): 26917-26927.

【6】Chen N, Ren Z, Lam E Y. High-resolution Fourier hologram synthesis from photographic images through computing the light field[J]. Applied Optics, 2016, 55(7): 1751-1756.

【7】Lohmann A W, Paris D P. Binary Fraunhofer holograms, generated by computer[J]. Applied Optics, 1967, 6(10): 1739-1748.

【8】Chen N, Yeom J, Hong K, et al. Fast-converging algorithm for wavefront reconstruction based on a sequence of diffracted intensity images[J]. Journal of the Optical Society of Korea, 2014, 18(3): 217-224.

【9】Li G, Yang W, Li D, et al. Cyphertext-only attack on the double random-phase encryption: experimental demonstration[J]. Optics Express, 2017, 25(8): 8690-8697.

【10】Gerchberg R W, Saxton W O. A practical algorithm for the determination of phase from image and diffraction plane pictures[J]. Optik, 1972, 35: 237-250.

【11】Fienup J R. Phase retrieval algorithms: a comparison[J]. Applied Optics, 1982, 21(15): 2758-2769.

【12】Yang G Z, Gu B Y, Dong B Z. Theory of the amplitude-phase retrieval in any linear transform system and its applications[J]. International Journal of Modern Physics B, 1993, 7(18): 3153-3224.

【13】Wang H, Yue W, Song Q, et al. A hybrid Gerchberg-Saxton-like algorithm for DOE and CGH calculation[J]. Optics and Lasers in Engineering, 2017, 89: 109-115.

【14】Hsueh C K, Sawchuk A A. Computer-generated double-phase holograms[J]. Applied Optics, 1978, 17(24): 3874-3883.

【15】Arrizón V. Complex modulation with a twisted-nematic liquid-crystal spatial light modulator: double-pixel approach[J]. Optics Letters, 2003, 28(15): 1359-1361.

【16】Chen Jiazhen, Zheng Zihua, Lian Guiren, et al. Computer-generated holographic watermark technology based on four detour phases encoding scheme[J]. Laser & Optoelectronics Progress, 2010, 47(6): 060901.
陈家祯, 郑子华, 连桂仁, 等. 基于四阶迂回相位编码的计算全息水印技术[J]. 激光与光电子学进展, 2010, 47(6): 060901.

【17】Li X, Liu J, Jia J, et al. 3D dynamic holographic display by modulating complex amplitude experimentally[J]. Optics Express, 2013, 21(18): 20577-20587.

【18】Mendoza-Yero O, Mínguez-Vega G, Lancis J. Encoding complex fields by using a phase-only optical element[J]. Optics Letters, 2014, 39(7): 1740-1743.

【19】Hou Junfeng, Huang Sujuan, Situ Guohai. Nonlinear optical image encryption[J]. Acta Optica Sinica, 2015, 35(8): 0807001.
侯俊峰, 黄素娟, 司徒国海. 非线性光学图像加密[J]. 光学学报, 2015, 35(8): 0807001.

【20】Qi Y, Chang C, Xia J. Speckleless holographic display by complex modulation based on double-phase method[J]. Optics Express, 2016, 24(26): 30368-30378.

引用该论文

Wang Caihong,Chen Ni,Yu Yingjie,Situ Guohai. Phase-Only Hologram Encoding Based on One-Dimensional Grating Function[J]. Acta Optica Sinica, 2017, 37(9): 0909001

王彩红,陈 妮,于瀛洁,司徒国海. 基于一维光栅函数的纯相位全息编码[J]. 光学学报, 2017, 37(9): 0909001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF