首页 > 论文 > 光学学报 > 37卷 > 9期(pp:924001--1)

金纳米粒子增强钙钛矿的荧光发射

Enhancing Perovskite Fluorescence Emission by Gold Nanoparticles

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

有机-无机杂化钙钛矿材料在钙钛矿发光二极管(PeLEDs)和激光器等光电器件中得到了新的应用, 如何进一步提高钙钛矿薄膜的发光效率是目前的研究热点。将20 nm粒径的金纳米粒子(Au NPs)掺杂至界面层PEDOT∶PSS中, 可使以甲胺铅溴盐(CH3NH3PbBr3)薄膜为发光层的荧光强度提升了2.7倍。研究表明, Au NPs的引入有效增强了CH3NH3PbBr3薄膜的吸收, 并提高了激子的辐射跃迁速率。同时, 结合光学仿真进行分析, 发现Au NPs的近场和远场表面等离激元均与钙钛矿薄膜吸收/发射区域有效耦合, 从而最大程度地提高发光效率。提出利用Au NPs的近场和远场复合表面等离激元效应可最大程度地提高钙钛矿薄膜的荧光发射效率, 该研究对制备高效率PeLEDs和激光器等提供了重要的理论指导和技术支持。

Abstract

Organic-inorganic hybrid perovskite has been attracted increasing attention in perovskite light-emitting diodes (PeLEDs) and lasers. How to improve the luminous efficiency of perovskite film is a hot topic. Gold nanoparticles (Au NPs) with diameter of 20 nm are doped into PEDOT∶PSS. The emission intensity of CH3NH3PbBr3 film increases 2.7-fold when the CH3NH3PbBr3 film is used as the luminescent layer. The results show that, the absorption of CH3NH3PbBr3 film and the radiation transition rate of excitons are improved when Au NPs are introduced. The results of the analysis combined with optical simulation show that the near-field and far-field surface plasmons of Au NPs can both coupling with absorption and emission areas of perovskite film, and the maximize luminous efficiency can be obtained. The luminous efficiency of perovskite film can be improved at the greatest extent by comprehensive surface plasmons of Au NPs in near field and far field, which can provide important theoretical direction and technical support in the fabrications of high efficiency PeLEDs and lasers.

投稿润色
补充资料

中图分类号:O433

DOI:10.3788/aos201737.0924001

所属栏目:表面光学

基金项目:国家自然科学基金(11602243,11504300)、国家自然科学基金委员会/中国工程物理研究院“NSAF”联合基金(U1630125)、重庆市基础与前沿研究计划(cstc2015jcyjA50002)

收稿日期:2017-04-13

修改稿日期:2017-05-08

网络出版日期:--

作者单位    点击查看

吴小龑:中国工程物理研究院流体物理研究所, 四川 绵阳 621900
熊自阳:西南大学物理科学与技术学院发光与实时分析教育部重点实验室, 重庆 400715
吴凌远:中国工程物理研究院流体物理研究所, 四川 绵阳 621900
李阳龙:中国工程物理研究院流体物理研究所, 四川 绵阳 621900
付 博:中国工程物理研究院流体物理研究所, 四川 绵阳 621900
刘国栋:中国工程物理研究院流体物理研究所, 四川 绵阳 621900
王伟平:中国工程物理研究院流体物理研究所, 四川 绵阳 621900
陈 平:西南大学物理科学与技术学院发光与实时分析教育部重点实验室, 重庆 400715

联系人作者:吴小龑(wuxiaoyan1219@sina.cn)

备注:吴小龑(1988-), 男, 博士, 助理研究员, 主要从事光电功能材料与器件方面的研究。

【1】Kojima A, Teshima K, Shirai Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J]. Journal of the American Chemical Society, 2009, 131(17): 6050-6051.

【2】Saliba M, Matsui T, Domanski K, et al. Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance[J]. Science, 2016, 354(6309): 206-209.

【3】Veldhuis S A, Boix P P, Yantara N, et al. Perovskite materials for light-emitting diodes and lasers[J]. Advanced Materials, 2016, 28(32): 6804-6834.

【4】Wang Nana, Si Junjie, Jin Yizheng, et al. Solution-processed organic-inorganic hybrid perovskite: A class of dream materials beyond photovoltaic applications[J]. Acta Chimica Sinica, 2015, 73(3): 171-178.
王娜娜, 司俊杰, 金一政, 等, 可溶液加工的有机-无机杂化钙钛矿: 超越光伏应用的“梦幻”材料[J]. 化学学报, 2015, 73(3): 171-178.

【5】Zhao Y, Zhu K. Organic-inorganic hybrid lead halide perovskites for optoelectronic andelectronic applications[J]. Chemical Society Reviews, 2016, 45(3): 655-689.

【6】Jaramillo-Quintero O A, Sanchez R S, Rincon M, et al. Bright visible-infrared light emitting diodes based on hybrid halide perovskite with spiro-OMeTAD as a hole-injecting layer[J]. The Journal of Physical Chemistry Letters, 2015, 6(10): 1883-1890.

【7】Tan Z K, Moghaddam R S, Lai M L, et al. Bright light-emitting diodes based on organometal halide perovskite[J]. Nature Nanotechnology, 2014, 9(9): 687-692.

【8】Xing G, Mathews N, Lim S S, et al. Low-temperature solution-processed wavelength-tunable perovskites for lasing[J]. Nature Materials, 2014, 13(5): 476-480.

【9】Zhu H, Fu Y, Meng F, et al. Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors[J]. Nature Materials, 2015, 14(6): 636-643.

【10】Wu Xiaoyan, Liu Linlin, Xie Zengqi, et al. Advance in metal-based nanoparticles for the enhanced performance of organic optoelectronics devices[J]. Chemical Journal of Chinese Universities, 2016, 37(3): 409-425.
吴小龑, 刘琳琳, 解增旗, 等, 金属纳米粒子增强有机光电器件性能研究进展[J]. 高等学校化学学报, 2016, 37(3):409-425.

【11】Wang Jingjing, Liu Ying, Wu Ying, et al. Research on fluorescence enhancement effect of silver nanoparticles on zinc porphyrin[J]. Acta Optica Sinica, 2015, 35(7): 073001.
王静静, 刘 莹, 吴 莹, 等, 银纳米微粒对锌卟啉的荧光增强效用研究[J]. 光学学报, 2015, 35(7): 0730001.

【12】Xie Wenfa, Xu Kai, Li Yang, et al. High-efficiency organic photoelectric devices with metal nanoparticles[J]. Chinese Journal of Luminecence, 2013, 34(5): 535-541.
谢文法, 徐 凯, 李 杨, 等. 利用金属纳米颗粒改善有机光电器件性能[J]. 发光学报, 2013, 34(5): 535-541.

【13】Yang X, Liu W, Chen H, et al. Recent advances in plasmonic organic photovoltaics[J]. Science China Chemistry, 2015, 58(2): 210-220.

【14】Wu X, Liu L, Choy W C H, et al. Substantial performance improvement in inverted polymer light-emitting diodes via surface plasmon resonance induced electrode quenching control[J]. ACS Applied Materials & Interfaces, 2014, 6(14): 11001-11006.

【15】Wu X, Liu L, Deng Z, et al. Efficiency improvement in polymer light-emitting diodes by “far-field” effect of gold nanoparticles[J]. Particle & Particle Systems Characterization, 2015, 32(6): 686-692.

【16】Rycenga M, Cobley C M, Zeng J, et al. Controlling the synthesis and assembly of silver nanostructures for plasmonic applications[J]. Chemical Reviews, 2011, 111(6): 3669-3712.

【17】Chen H J, Shao L, Li Q, et al. Gold nanorods and their plasmonic properties[J]. Chemical Society Reviews, 2013, 42(7): 2679-2724.

【18】Stratakis E, Kymakis E. Nanoparticle-based plasmonic organic photovoltaic devices[J]. Materials Today, 2013, 16(4): 133-146.

【19】Lü Fengting, Zheng Hairong, Fang Yu. Studies of surface-enhanced fluorescence[J]. Progress in Chemistry, 2007, 19(2/3): 256-266.
吕凤婷, 郑海荣, 房 喻. 表面增强荧光研究进展[J]. 化学进展, 2007, 19(2/3): 256-266.

【20】Xu Liangmin, Zhang Zhenglong, Cai Xiaoyan, et al. Physical mechanisms of fluorescence at metal surface[J]. Chinese Journal of Luminescence, 2009, 30(3): 373-378.
徐良敏, 张正龙, 蔡晓燕, 等. 金属表面荧光增强的物理增强机制[J]. 发光学报, 2009, 30(3): 373-378.

【21】Kummerlen J, Leitner A, Brunner H, et al. Enhanced dye fluorescence over silver island film: Analysis of the distance dependence[J]. Molecular Physics, 1993, 80(5): 1031-1046.

【22】Geddes C D, Lakowicz J R. Metal-enhanced fluorescence[J]. Journal of Fluorescence, 2002, 12(2): 121-129.

【23】Frens G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions[J]. Nature Physical Science, 1973, 241(105): 20-22.

【24】Saparov B, Mitzi D B. Organic-inorganic perovskites: Structural versatility for functional materials design[J]. Chemical Reviews, 2016, 116(7): 4558-4596.

【25】Cheng Cheng, Shao Hang. Photoluminescence lifetime of PbSe quantum dots doped in hexane at room temperature[J]. Acta Optica Sinica, 2016, 36(2): 0216003.
程 成, 邵 航. 室温下正己烷本底中PbSe量子点的荧光寿命[J]. 光学学报, 2016, 36(2): 0216003.

【26】Wu X, Liu L, Yu T, et al. Gold nanoparticles modified ITO anode for enhanced PLEDs brightness and efficiency[J]. Journal of Materials Chemistry C, 2013, 1(42): 7020-7025.

引用该论文

Wu Xiaoyan,Xiong Ziyang,Wu Lingyuan,Li Yanglong,Fu Bo,Liu Guodong,Wang Weiping,Chen Ping. Enhancing Perovskite Fluorescence Emission by Gold Nanoparticles[J]. Acta Optica Sinica, 2017, 37(9): 0924001

吴小龑,熊自阳,吴凌远,李阳龙,付 博,刘国栋,王伟平,陈 平. 金纳米粒子增强钙钛矿的荧光发射[J]. 光学学报, 2017, 37(9): 0924001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF