首页 > 论文 > 光学学报 > 37卷 > 10期(pp:1008001--1)

基于消像散反射面的离轴虚像系统设计

Design of Off-Axis Virtual System Based on Anastigmatic Reflection Surface

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

为了解决离轴虚像系统中像散对清晰度的影响问题, 提出了一种在全视场范围内消像散的反射面设计思路, 并给出了基于微分方程的消像散反射面的设计算法。设计的消像散面型可以有效地校正系统各视场的像散, 减小弥散斑尺寸。将消像散面型应用在视场为60°×40°的离轴虚像系统中, 各视场弥散斑半径均小于艾里斑半径。将采用消像散反射面的设计结果与相同参数下采用球面和轮胎面时进行对比, 可以发现, 在采用消像散反射面的设计结果中, 弥散斑均方根半径和像散绝对值小于全视场范围内采用球面时的20%, 且小于边缘视场内采用轮胎面时的20%。

Abstract

In order to solve the problem of astigmatism which affects the clarity in virtual system, a type of reflection surface design is put forward for astigmatism correction in the full field, and the design algorithm of the anastigmatic reflection surface based on differential equations is presented. The designed anastigmatic surface can correct astigmatism at each field of view effectively and decrease the size of dispersion spot. An astigmatic surface is applied in the off-axis virtual display system with the field of view of 60°×40°, and the radius of dispersion spot at each field of view is less than that of the Airy disk. The design results of the anastigmatic reflection surface are compared with the results designed by a spherical and a toroidal surface with the same parameters. It is found that the root mean square radius of dispersion spot and the absolute value of astigmatism designed by anastigmatic reflection surface are less than 20% of the result designed by a spherical reflective surface at the full field, and they are less than 20% of the result designed by a toroidal reflective surface at the margin field.

投稿润色
补充资料

中图分类号:O435

DOI:10.3788/aos201737.1008001

所属栏目:几何光学

基金项目:国家重大科技专项高分专项(51-H34D01-8358-13/16)

收稿日期:2017-05-04

修改稿日期:2017-06-05

网络出版日期:--

作者单位    点击查看

赵渊明:长春理工大学光电工程学院, 吉林 长春 130022
崔庆丰:长春理工大学光电工程学院, 吉林 长春 130022
朴明旭:长春理工大学光电工程学院, 吉林 长春 130022
赵丽东:长春理工大学光电工程学院, 吉林 长春 130022

联系人作者:赵渊明(yming_zhao@sina.com)

备注:赵渊明(1989-), 男, 博士研究生, 主要从事光学设计和自由曲面方面的研究。

【1】Takaki Y, Urano Y, Kashiwada S, et al. Super multi-view windshield display for long-distance image information presentation[J]. Optics Express, 2011, 19(2): 704-716.

【2】Takaki Y, Nago N. Multi-projection of lenticular displays to construct a 256-view super multi-viewdisplay[J]. Optics Express, 2010, 18(9): 8824-8835.

【3】Batchko R, Robinson S, Schmidt J, et al. A variable-collimation display system[C]. SPIE, 2014, 9011: 901109.

【4】Chen L, Chen H X, Wang R J, et al. The application of film negative press off-axis type virtual image display system on flight simulator[C]. SPIE, 2005, 5637: 502-509.

【5】Marshall P. Towards-higher resolution displays for flight simulation[C]. SPIE, 2001, 4511: 205-211.

【6】Guan Yingzi. Design of wide-angle infinity display equipment of airplane simulator[J]. Journal of Beijing University of Aeronautics and Astronautics, 2008, 34(10): 1214-1216.
关英姿. 飞行训练模拟器广角无限显示系统设计[J]. 北京航空航天大学学报, 2008, 34(10): 1214-1216.

【7】Hu X D, Hua H. High-resolution optical see-through multi-focal-plane head-mounted display using freeform optics[J]. Optics Express, 2014, 22(11): 13896-13903.

【8】Wang Qingfeng, Cheng Dewen, Wang Yongtian. Description of free-form optical curved surface using two-variable orthogonal polynomials[J]. Acta Optica Sinica, 2012, 32(9): 0922002.
王庆丰, 程德文, 王涌天. 双变量正交多项式描述光学自由曲面[J]. 光学学报, 2012, 32(9): 0922002.

【9】Zhu Hao, Cui Qingfeng, Piao Mingxu, et al. Design of circular unobscured three-mirror optical systems[J]. Acta Photonica Sinica, 2014, 43(10): 1022004.
朱浩, 崔庆丰, 朴明旭, 等. 圆周式无遮拦三反射镜光学系统设计[J]. 光子学报, 2014, 43(10): 1022004.

【10】Ye Jingfei, Gao Zhishan, Liu Xiaoli, et al. Freeform surfaces reconstruction based on Zernike polynomials and radial basis function[J]. Acta Optica Sinica, 2014, 34(8): 0822003.
叶井飞, 高志山, 刘晓莉, 等. 基于Zernike多项式和径向基函数的自由曲面重构方法[J]. 光学学报, 2014, 34(8): 0822003.

【11】Li Hua, Zhang Xin, Wang Chao, et al. Optical design of an avionic helmet-mounted displays using freeform surface[J]. Acta Optica Sinica, 2014, 34(3): 0322001.
李华, 张新, 王超, 等. 自由曲面机载头盔显示器光学系统设计[J]. 光学学报, 2014, 34(3): 0322001.

【12】Xu C, Cheng D W, Song W T, et al. Design of compact fisheye lens with slope-constrained Q-type aspheres[C]. SPIE, 2013, 8841: 88410D.

【13】Ma B, Sharma K, Thompson K P, et al. Mobile device camera design with Q-type polynomials to achieve higher production yield[J]. Optics Express, 2013, 21(15): 17454-17463.

【14】Liu J Y, Miano J C, Benítez P, et al. Single optical surface imaging designs with unconstrained object to image mapping[C]. SPIE, 2012, 8550: 855011.

【15】Dominguez J C M, Gimenez P B, Null L W, et al. Overview of the SMS design method applied to imaging optics[C]. SPIE, 2009, 7429: 74290C.

【16】Hou J, Li H F, Wu R M, et al. Method to design two aspheric surfaces for image system[J]. Applied Optics, 2013, 52(11): 2294-2299.

【17】Yuan Xucang. Optical design[M]. Beijing: Beijing Institute of Technology Press, 1988.
袁旭沧. 光学设计[M]. 北京: 北京理工大学出版社, 1988.

【18】Nordin A П. The theory of surface[M]. Beijing: Higher Education Press, 1965.
A·П·诺尔金. 曲面论[M]. 北京: 高等教育出版社, 1965.

【19】Lee H, Kim K, Lee G, et al. Photorealistic ray tracing to visualize automobile side mirror reflective scenes[J]. Optics Express, 2014, 22(21): 25729-25738.

【20】研野孝吉. 视觉显示装置: CN102159983A[P]. 2011-08-17.

【21】Li Rongbin, Zhang Zhihui, Du Xue, et al. Ultra-precision machining technology of freeform optics and its applications[J]. Infrared and Laser Engineering, 2010, 39(1): 110-115.
李荣彬, 张志辉, 杜雪, 等. 自由曲面光学的超精密加工技术及其应用[J]. 红外与激光工程, 2010, 39(1): 110-115.

引用该论文

Zhao Yuanming,Cui Qingfeng,Piao Mingxu,Zhao Lidong. Design of Off-Axis Virtual System Based on Anastigmatic Reflection Surface[J]. Acta Optica Sinica, 2017, 37(10): 1008001

赵渊明,崔庆丰,朴明旭,赵丽东. 基于消像散反射面的离轴虚像系统设计[J]. 光学学报, 2017, 37(10): 1008001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF