首页 > 论文 > 激光与光电子学进展 > 54卷 > 10期(pp:101003--1)

基于对称相位一致性的图像质量评价方法

Image Quality Assessment Based on Symmetry Phase Congruency

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

针对基于特征相似性的图像质量评价方法(FSIM)在检测图像阶跃边缘时存在的局限性, 提出一种将FSIM与对阶跃边缘敏感的对称相位一致性(SPC)相结合, 并利用各向同性Sobel算子计算梯度幅值的新方法--对称特征相似度(SFSIM)。该方法利用SPC通过相位相邻像素响应的符号确定对称相位的特性和更加准确的各向同性Sobel算子加权系数, 能够很好地检测和定位尖锐的图像边缘特征。对不同失真类型的图像进行仿真实验, 结果表明, 在保留原始方法优良性能的基础上, SFSIM对比较尖锐的图像边缘特征和高斯模糊图像具有更高的敏感性。

Abstract

The image quality assessment algorithm based on feature similarity (FSIM) has certain limitations to some extent when detecting image step edges. A new algorithm named symmetry feature similarity is put forward by combining the FSIM with the symmetry phase congruency (SPC), which is sensitive to step edges, and calculating the gradient magnitude through the isotropic Sobel operator. The proposed algorithm makes use of the symbols responded to the phase adjacent pixels by SPC and the more accurate weighting coefficient of isotropic Sobel operator to detect and locate the image edge feature. The simulation experiments on various kinds of distorted images are carried out, and the results indicate that the SFSIM is more sensitive to sharper image edge features and Gaussian blurred images, on the basis of retaining the excellent performance of the original method.

投稿润色
补充资料

中图分类号:TP391.4

DOI:10.3788/lop54.101003

所属栏目:图像处理

基金项目:国家科技支撑计划(2015BAK01B06)、河南省自然科学基金(162300410032)

收稿日期:2017-04-24

修改稿日期:2017-05-31

网络出版日期:--

作者单位    点击查看

张 帆:河南大学图像处理与模式识别研究所, 河南 开封 475000
张偌雅:河南大学图像处理与模式识别研究所, 河南 开封 475000
李珍珍:河南大学图像处理与模式识别研究所, 河南 开封 475000

联系人作者:张帆(zhangfan@henu.edu.cn)

备注:张 帆(1967-), 男, 博士, 教授, 主要从事数字图像处理方面的研究。

【1】Wang Z, Bovik A C. Modern image quality assessment[M]. New York: Morgan and Claypool Publishing Company, 2006: 20-30.

【2】Wang Z, Bovik A C, Sheikh H R, et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600-612.

【3】Chang H W, Yang H, Gan Y, et al. Sparse feature fidelity for perceptual image quality assessment[J]. IEEE Transactions on Image Processing, 2013, 22(10): 4007-4018.

【4】Lv X, Wang Z J. Reduced-reference image quality assessment based on perceptual image hashing[C]. Proceedings of the 2009 16th IEEE International Conference on Image Processing (ICIP), 2009: 4361-4364.

【5】Xue Xiaobo, Yu Mei, He Meiling. Sterescopic image-quality-assessment method based on visual cell model[J]. Laser & Optoelectronics Progress, 2016, 53(4): 041004.
薛小波, 郁梅, 何美伶. 基于仿视觉细胞模型的立体图像质量评价方法[J]. 激光与光电子学进展, 2016, 53(4): 041004.

【6】Wang Z, Wu G X, Sheikh H R, et al. Quality-aware images[J]. IEEE Transactions on Image Processing, 2006, 15(6): 1680-1689.

【7】Tian Haonan, Li Sumei. Objective evaluation method for image quality based on edge structure similarity[J]. Acta Photonica Sinica, 2013, 42(1): 110-114.
田浩男, 李素梅. 基于边缘的SSIM图像质量客观评价方法[J]. 光子学报, 2013, 42(1): 110-114.

【8】Zhang L, Zhang L, Mou X Q, et al. FSIM: a feature similarity index for image quality assessment[J]. IEEE Transactions on Image Processing, 2011, 20(8): 2378-2386.

【9】Xiao Zhitao, Hou Zhengxin, Guo Chengming. Image feature detection technique based on phase information: symmetry phase congruency[J]. Journal of Tianjin University, 2004, 37(8): 695-699.
肖志涛, 侯正信, 国澄明. 基于相位信息的图像特征检测算法: 对称相位一致性[J]. 天津大学学报, 2004, 37(8): 695-699.

【10】Morrone M C, Owens R A. Feature detection from local energy[J]. Pattern Recognition Letters, 1987, 6(5): 303-313.

【11】Yang Diwei, Yu Shaoquan. Image quality assessment based on phase congruency[J]. Computer Engineering and Applications, 2015, 51(2): 16-20.
杨迪威, 余绍权. 利用相位一致性的图像质量评价方法[J]. 计算机工程与应用, 2015, 51(2): 16-20.

【12】Liu Z, Laganière R. Phase congruence measurement for image similarity assessment[J]. Pattern Recognition Letters, 2007, 28(1): 166-172.

【13】Morrone M C, Ross J, Burr D C, et al. Mach bands are phase dependent[J]. Nature, 1986, 324(6094): 250-253.

【14】Kovesi P. Invariant measures of image features from phase information[D]. Perth: Department of Computer Science, University of Western Australia, 1996.

【15】Fu S J, Ruan Q Q, Wang W Q. A shock-diffusion equation with local coupling term for image sharpening[J]. Journal of Optoelectronics·Laser, 2007, 18(2): 245-248.

【16】Chu Jiang, Chen Qiang, Yang Xichen. Review on full reference image quality assessment algorithms[J]. Application Research of Computers, 2014, 31(1): 13-22.
褚江, 陈强, 杨曦晨. 全参考图像质量评价综述[J]. 计算机应用研究, 2014, 31(1): 13-22.

【17】Yang C, Kwok S H. Efficient gamut clipping for color image processing using LHS and YIQ[J]. Optical Engineering, 2003, 42(3): 701-711.

【18】Tan Yongqian, Zeng Fanju, Yue Li, et al. An improved texture image synthesis algorithm[J]. Laser & Optoelectronics Progress, 2016, 53(12): 121001.
谭永前, 曾凡菊, 岳莉, 等. 一种改进的纹理图像合成算法[J]. 激光与光电子学进展, 2016, 53(12): 121001.

【19】Li Junshan, Ma Ying, Zhao Fangzhou, et al. A novel arithmetic of image edge detection of canny operator[J]. Acta Photonica Sinica, 2011, 40(s1): 50-54.
李俊山, 马颖, 赵方舟, 等. 改进的Canny图像边缘检测算法[J]. 光子学报, 2011, 40(s1): 50-54

【20】Xiang Yan, Ye Qinghao, Liu Jianguo, et al. Retrieve of planetary boundary layer height based on image edge detection[J]. Chinese J Lasers, 2016, 43(7): 0704003.
项衍, 叶擎昊, 刘建国, 等. 基于图像边缘检测法反演大气边界层高度[J]. 中国激光, 2016, 43(7): 0704003.

【21】Sheikh H R, Wang Z, Cormack L, et al. LIVE image quality assessment database release 2[EB/OL]. [2017-04-24]http:live.ece.utexas.edu/research/quality.

【22】Sheikh H R, Sabir M F, Bovik A C. A statistical evaluation of recent full reference image quality assessment algorithms[J]. IEEE Transactions on Image Processing, 2006, 15(11): 3440-3451.

【23】Corriveau P J, Webster A A, Rohaly A M, et al. Video quality experts group: the quest for valid objective methods[C]. Electronic Imaging. International Society for Optics and Photonics, 2000: 129-139.

【24】Brunnstrom K, Hands D, Speranza F, et al. VQEG validation and ITU standardization of objective perceptual video quality metrics[J]. IEEE Signal Processing Magazine, 2009, 26(3): 96-101.

【25】Goodman J W. Introduction to Fourier optics[M]. Qin Kecheng, Liu Peisen, Chen Jiabi, et al. Transl. 3rd ed. Beijing: Publishing House of Electronics Industry, 2016: 114-116.
古德曼. 傅里叶光学导论[M]. 秦克诚, 刘培森, 陈家碧, 等, 译. 3版. 北京: 电子工业出版社, 2016: 114-116.

引用该论文

Zhang Fan,Zhang Ruoya,Li Zhenzhen. Image Quality Assessment Based on Symmetry Phase Congruency[J]. Laser & Optoelectronics Progress, 2017, 54(10): 101003

张 帆,张偌雅,李珍珍. 基于对称相位一致性的图像质量评价方法[J]. 激光与光电子学进展, 2017, 54(10): 101003

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF