首页 > 论文 > 应用光学 > 38卷 > 4期(pp:555-561)

基于改进空间频率域采样的天文光干涉望远镜阵列优化

Astronomy optical interferometric telescope array optimization based on modified UV sampling method

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

提出一种基于改进空间频率域(UV)采样的阵列评价函数, 用于长基线天文光干涉望远镜阵列几何结构的优化。该评价函数将UV采样区域沿径向和角度方向分别进行划分, 统计划分所得区域中UV采样点数目并计算UV采样点密度, 以UV采样点密度偏离理想高斯分布的大小作为评价依据。在具体的优化技术上, 利用遗传算法的全局收敛特性, 降低了传统算法对初始结构的依赖, 采用该评价函数对6孔径望远镜阵列进行优化设计, 并与国际主流天文光干涉阵列CHARA进行了性能对比。分析结果表明: 优化所得Array-6阵列UV采样点密度分布具有径向连续覆盖和低频强调的特点, 有利于对轮廓信息的恢复; 双星模拟成像实验中Array-6阵列重构图像相对于原始图像的误差为21.34, 相比CHARA阵列降低了18.16%, 具有更高的成像质量。该优化算法具备优化大孔径数目阵列的能力, 对于射电波段望远镜阵列的优化设计亦有一定的参考意义。

Abstract

A merit function based on modified spatial frequency domain(UV) sampling method is proposed,which can be used to optimize the geometny of long baseline astronomy optical interferometer telescope array. The UV region to be sampled is firstly divided in both radial and rotational directions, then the number and density of UV sampling points of each segment are calculated. The deviation of UV sampling point density distribution from the ideal Gaussian distribution is taken as the merit function value. The genetic algorithm is used as the optimization algorithm, due to its global convergence capability which can reduce the dependence on initial array. A 6 apertures telescope array was optimized with the proposed merit function using genetic algorithm. Moreover, the optimized array(Array-6 array) was compared with the CHARA array. Analysis results show that the Array-6 array UV sampling points distribution in the radial direction is intensive in low frequencies and continuous, which is beneficial to the reconstruction of observation target contour and structure. The binary star observation and image reconstruction simulations show that the array optimized using the proposed merit function has better imaging performance, compared with the CHARA array. The error of reconstructed image using Array-6 is 21.34, which is 18.16% smaller than the error of reconstructed image using CHARA. Additional, the proposed merit function can be used to optimize arrays with large aperture numbers, so it also has a large application prospect for the optimal design of the radio-band telescope array.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:TN23;TH751

DOI:10.5768/jao201738.0401007

所属栏目:光电系统与工程

基金项目:国家自然科学基金(11273038)

收稿日期:2017-03-09

修改稿日期:2017-04-21

网络出版日期:--

作者单位    点击查看

孙长胜:中国科学院国家天文台 南京天文光学技术研究所, 江苏 南京 210042中国科学院 天文光学技术重点实验室, 江苏 南京 210042中国科学院大学, 北京 100049
朱永田:中国科学院国家天文台 南京天文光学技术研究所, 江苏 南京 210042中国科学院 天文光学技术重点实验室, 江苏 南京 210042
胡中文:中国科学院国家天文台 南京天文光学技术研究所, 江苏 南京 210042中国科学院 天文光学技术重点实验室, 江苏 南京 210042
徐 腾:中国科学院国家天文台 南京天文光学技术研究所, 江苏 南京 210042中国科学院 天文光学技术重点实验室, 江苏 南京 210042
吴 桢:中国科学院国家天文台 南京天文光学技术研究所, 江苏 南京 210042中国科学院 天文光学技术重点实验室, 江苏 南京 210042

联系人作者:孙长胜(cssun@niaot.ac.cn)

备注:孙长胜(1988-), 男, 山西临汾人, 博士研究生, 主要从事天文光干涉技术研究。

【1】Monnier J D. Optical interferometry in astronomy[J]. Reports on Progress in Physics, 2003, 66(5): 789.

【2】Guo Hongfeng. Development on techniques of the optical interferometry and aperture synthesis[J]. Progress in Astronomy, 2003, 21(3): 219-230.
郭红锋. 光干涉与综合孔径技术发展[J]. 天文学进展, 2003, 21(3): 219-230.

【3】Armstrong J. Optical and infrared interferometric imaging[C]// Computational optical sensing and imaging.Virgnia: OSA, 2013.

【4】Pedretti E, Monnier J D, Brummelaar T A, et al. Imaging with the CHARA interferometer[J]. New Astronomy Reviews, 2009, 53(11): 353-362.

【5】Armstrong J T, Hutter D J, Baines E K, et al. The navy precision optical interferometer (npoi): an update[J]. Journal of Astronomical Instrumentation, 2014, 2(2): 1340002-8.

【6】Buscher D F, Bakker E J, Coleman T, et al. The magdalena ridge observatory interferometer: a high sensitivity imaging array[J]. SPIE, 2006, 6307(1): 63070B-11.

【7】He Yuntao,Jiang Yuesong,Liu Guangda. Optical synthesis aperture circle-array optimization based on genetic algorithm[J]. Acta Optica Sinica, 2007, 27(9): 1611-1616.
何云涛, 江月松, 刘广达. 基于遗传算法的光综合孔径圆周阵优化[J]. 光学学报, 2007, 27(9): 1611-1616.

【8】Liang Shitong. Study on the imaging theory of the optical synthetic aperture imaging systems[D]. Beijing: Graduate School of Chinese Academy of Sciences, 2011.
梁士通. 合成孔径学成像系统研究[D]. 北京: 中国科学院研究生院, 2011.

【9】Zhang Xianling. Study on the astronomical optical interferometry and optical aperture synthetic image reconstruction[D]. Nanjing: Nanjing University of Technology, 2004.
张仙玲. 天文光干涉与光学综合孔径图像重构技术研究[D]. 南京: 南京理工大学, 2004.

【10】Boone F. Interferometric array design: Optimizing the locations of the antenna pads[J]. Astronomy & Astrophysics, 2001, 377(1): 368-376.

【11】Wang Wei, Yan Yihua, Chen Zhijun. Array configuration design for CSRH[J]. Astronomical Research & Technology, 2013,10(1): 17-21.
王威, 颜毅华, 陈志军. CSRH阵列设计研究[J]. 天文研究与技术: 国家天文台台刊, 2013, 10(1): 17-21.

【12】Mozurkewich D. Interferometer design for synthesis imaging[C].CA: California Institulte of Technology, 2000: 231.

【13】Cornwell T J. A novel principle for optimization of the instantaneous Fourier plane coverage of correlation arrays[J]. IEEE Transactions on Antennas and Propagation, 1988, 36: 1165-1167.

【14】Keto E. The shapes of cross-correlation interferometers[J]. Astrophysical Journal, 2009, 475(2): 843-852.

【15】Cohanim B E, Hewitt J N, De Weck O. The design of radio telescope array configurations using multiobjective optimization: imaging performance versus cable length[J]. The Astrophysical Journal Supplement Series, 2004, 154(2): 705-719.

【16】Lin Xiejia, Wu Zheng. Study on uv coverage of optical synthetic aperture imaging technology and optimization of aperture[J]. Journal of Applied Optics, 2012, 33(1): 30-36.
林燮佳, 吴桢. 光学合成孔径成像技术的 uv覆盖与孔径排列研究[J]. 应用光学, 2012, 33(1): 30-36.

【17】Chen Haiting,Jiang Yuesong,Zhong Yu. Study of optimization and imaging characteristics of two-dimensional circle array for optical synthetic aperture system[J]. Acta Optica Sinica,2005,25(12): 1616-1622.
陈海亭, 江月松, 钟宇. 二维圆周光综合孔径阵的优化排列及其成像特性研究[J]. 光学学报, 2005, 25(12): 1616-1622.

【18】Wenger S,Darabi S,Sen P,et al.Compressed sensing for aperture synthesis imaging[C]//2010 IEEE international conference on image processing.New York: IEEE,2010: 1381-1384.

【19】Morita K I,Holdaway M A.The array configuration design of the atacama compact array[J].SPIE,2008,7012: 70120O-12.

【20】Kogan L.Optimizing a large array configuration to minimize the sidelobes[J].IEEE Transactions on Antennas & Propagation,2000,48(7): 1075-1078.

【21】Boone F.Interferometric array design: Optimizing the locations of the antenna pads[J].Astronomy & Astrophysics,2001,377(1): 368-376.

【22】Born M,Wolf E.Principles of optics: electromagnetic theory of propagation,interference and diffraction of light[M].7th ed.Cambridge: Cambridge University Press,2000: 572-577.

引用该论文

Sun Changsheng,Zhu Yongtian,Hu Zhongwen,Xu Teng,Wu Zhen. Astronomy optical interferometric telescope array optimization based on modified UV sampling method[J]. Journal of Applied Optics, 2017, 38(4): 555-561

孙长胜,朱永田,胡中文,徐 腾,吴 桢. 基于改进空间频率域采样的天文光干涉望远镜阵列优化[J]. 应用光学, 2017, 38(4): 555-561

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF