首页 > 论文 > Optoelectronics Letters > 12卷 > 6期(pp:441-445)

Structure optimization of high indium content InGaAs/InP heterostructure for the growth of In0.82Ga0.18As buffer layer

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

Abstract

Microstructure and misfit dislocation behavior in InxGa1-xAs/InP heteroepitaxial materials grown by low pressure metal organic chemical vapor deposition (LP-MOCVD) were analyzed by high resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM), atomic force microscopy (AFM), Raman spectroscopy and Hall effect measurements. To optimize the structure of In0.82Ga0.18As/InP heterostructure, the InxGa1-xAs buffer layer was grown. The residual strain of the In0.82Ga0.18As epitaxial layer was calculated. Further, the periodic growth pattern of the misfit dislocation at the interface was discovered and verified. Then the effects of misfit dislocation on the surface morphology and microstructure of the material were studied. It is found that the misfit dislocation of high indium (In) content In0.82Ga0.18As epitaxial layer has significant influence on the carrier concentration.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.1007/s11801-016-6190-3

基金项目:This work has been supported by the National Key Basic Research Program of China (No.2012CB619200), the National Natural Science Foundation of China (No.61474053), the State Key Laboratory for Mechanical Behavior of Materials of Xi'an Jiaotong University (No.20161806),and the Natural Science Basic Research Open Foundation of the Key Lab of Automobile Materials, Ministry of Education, Jilin University(No.1018320144001).

收稿日期:2016-09-05

修改稿日期:--

网络出版日期:--

作者单位    点击查看

WEI Qiu-lin:Key Laboratory of Automobile Materials of Ministry of Education of China, College of Materials Science and Engineering, Jilin University, Changchun 130025, China
GUO Zuo-xing:Key Laboratory of Automobile Materials of Ministry of Education of China, College of Materials Science and Engineering, Jilin University, Changchun 130025, China
ZHAO Lei:Key Laboratory of Automobile Materials of Ministry of Education of China, College of Materials Science and Engineering, Jilin University, Changchun 130025, China
ZHAO Liang:Key Laboratory of Automobile Materials of Ministry of Education of China, College of Materials Science and Engineering, Jilin University, Changchun 130025, China
YUAN De-zeng:Key Laboratory of Automobile Materials of Ministry of Education of China, College of Materials Science and Engineering, Jilin University, Changchun 130025, China
MIAO Guo-qing:State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
XIA Mao-sheng:Key Laboratory of Automobile Materials of Ministry of Education of China, College of Materials Science and Engineering, Jilin University, Changchun 130025, China

联系人作者:XIA Mao-sheng(xiams@jlu.edu.cn)

【1】X. Jin, H. Nakahara, K. Saitoh, T. Saka, T. Ujihara, N. Tanaka and Y. Takeda, Journal of Crystal Growth 353, 84 (2012).

【2】M. Hostut, M. Alyoruk, T. Tansel, A. Kilic, R. Turan, A. Aydinli and Y. Ergun, Superlattices & Microstructures 79, 116 (2015).

【3】N. Tounsi, M.M. Habchi, Z. Chine, A. Rebey and B. El Jani, Superlattices & Microstructures 59, 133 (2013).

【4】S.H. Huynh, M.T.H. Ha, H.B. Do, Q.H. Luc and H.W. Yu, Applied Physics Letters 109, 10 (2016).

【5】F. Zheng, C.Wang, Z. B. Sun and G.J. Zhai, Journal of Optoelectronics·Laser 25, 1254 (2014). (in Chinese)

【6】S.J. Lin, J.J. Li, L.J. He, J. Den and J. Han, Journal of Optoelectronics·Laser 25, 1471 (2014). (in Chinese)

【7】T. Mano, K. Mitsuishi, N. Ha, A. Ohtake and A. Castellano, Crystal Growth & Design 16, 5412 (2016).

【8】J.L. Weyher, R. Fornari, T. G r g, J.J. Kelly and C.B. Erné, Journal of Crystal Growth 141, 57 (1994).

【9】P.D. Casa, A. Maa dorf, U. Zeimer and M. Weyers, Journal of Crystal Growth 434, 116 (2016).

【10】J.G. Grabmaier and C.B. Watson, Physical Status Solidi 32, K13 (1969).

【11】T. Takenaka, H. Hayashi, K. Murata and T. Inoguchi, Jpn J. Applied Physics Letters 17, 1145 (1978).

【12】S. Emura, S. Gonda and Y. Matsui, Physical Review B 38, 3280 (1988).

【13】M.R. Islam, P. Verma and M. Yamada, Jpn J. Applied Physics 41, 991 (2002).

【14】J.P. Estrera, P.D. Stevens and R. Glosser, Applied Physics Letters 61,1927 (1992).

【15】J. Groenen, G. Landa and R. Carles, J. Applied Physics 82, 803 (1997).

【16】G. Burns, C.R. Wie and F.H. Dacol, Applied Physics Letters 51, 1919 (1987).

【17】B. Jusserand, P. Voisin and M. Voos, Applied Physics Letters 46, 678 (1985).

【18】F. Cerdeira, C.J. Buchenauer and F.H. Pollak, Physical Review B 5, 580 (1972).

【19】R.J. Nicholas, L.C. Brunel and S. Huant, Physical Review Letter 55, 883 (1985).

【20】T. Sasaki, A.G. Norman, M.J. Romero, M.M. Al-Jassim, M.Takahasi, N. Kojima, Y. Ohshita and M. Yamaguchi, Physical Status Solidi C 10, 1640 (2013).

【21】J.P. Li, G.Q. Miao, Z.W. Zhang and Y.G. Zeng, Cryst. Eng. Comm. 17, 5808 (2015).

【22】M. Fatemi and R.E. Stahlbush, Applied Physics Letters 58, 825 (1991).

【23】Bai Y, Lee K E and Cheng C, J. Applied Physics 104, 084518 (2008).

【24】Chen Y W, Hsu W C and Hsu R T, Solid-State Electronics 48, 119 (2004).

引用该论文

WEI Qiu-lin,GUO Zuo-xing,ZHAO Lei,ZHAO Liang,YUAN De-zeng,MIAO Guo-qing,XIA Mao-sheng. Structure optimization of high indium content InGaAs/InP heterostructure for the growth of In0.82Ga0.18As buffer layer[J]. 光电子快报(英文版), 2016, 12(6): 441-445

WEI Qiu-lin,GUO Zuo-xing,ZHAO Lei,ZHAO Liang,YUAN De-zeng,MIAO Guo-qing,XIA Mao-sheng. Structure optimization of high indium content InGaAs/InP heterostructure for the growth of In0.82Ga0.18As buffer layer[J]. Optoelectronics Letters, 2016, 12(6): 441-445

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF