首页 > 论文 > 光谱学与光谱分析 > 37卷 > 9期(pp:2673-2678)

基于共振型高灵敏度光声光谱技术探测痕量乙炔气体浓度

Acetylene Detection Based on Resonant High Sensitive Photoacoustic Spectroscopy

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

乙炔气体作为判断变压器运行状态的一种故障气体, 其浓度的高低反映了变压器的运行状况, 因此对其浓度的探测在变压器的维护中具有重要意义。 为了准确探测变压器运行过程中产生的乙炔气体浓度, 为变压器的维护提供技术参数, 针对基于DFB激光器的共振型光声光谱技术痕量乙炔气体检测技术开展研究, 对传统的光声光谱探测系统进行改进。 根据光声光谱技术的理论可知, 光声信号的强度与入射激光的功率成正比, 所以在光声池的出射窗口采用一个平面反射镜将红外光再次反射到光声池中以增加入射光功率, 增强光声信号强度, 进一步提高了光声系统的探测灵敏度。 通过一定浓度的乙炔气体在不同调制频率和不同调制深度下光声信号强度的变化, 确定光声探测系统的最佳调制频率和最佳调制深度为767 Hz和0.3 mV。 利用不同浓度乙炔气体对系统进行标定, 然后采用最小二乘法对光声信号与气体浓度进行拟合, 二者具有很好的线性度。 通过Allan方差计算可知, 系统在平均时间达到200 s时, 能够达到最低探测极限浓度。 实验表明, 在一个大气压下, 积分时间为10 ms时, 改进后的共振型光声光谱探测系统对乙炔气体的最低探测极限浓度达到了0.3 μL·L-1。 还将小波去噪技术引入到低浓度下乙炔气体的光声信号处理中, 有效消除了低浓度气体光声信号中的噪声, 提高了信噪比。 设计的共振型光声光谱探测系统操作简单, 最低探测浓度符合国标中对变压器维护过程中对乙炔气体的探测需求, 在变压器维护领域具有广阔的应用前景。

Abstract

Acetylene is a kind of fault gases used to judge the operating state of transformer, and its concentration reflects the operation condition, so the detection of acetylene concentration has important significance in transformer maintenance. In order to detect acetylene concentration generated in the running process accurately to provide technical parameters for transformer maintenance, this paper has done a research based on the DFB laser photoacoustic spectroscopy for trace acetylene detection, which improves traditional photoacoustic spectroscopy detection system. The intensity of photoacoustic signal is proportional to the incident laser power based on photoacoustic theory, so in this paper a reflector was installed opposite the light-emitting window of the photoacoustic cell to reflect infrared light back to increase the power of incident light, which can enhance the intensity of photoacoustic signal and then further improve the detection sensitivity of the photoacoustic detection system. The photoacoustic spectroscopy detection system will have the optimal detection performance under the optimal modulation frequency and modulation depth, so in this paper the important parameters of optimal modulation frequency and modulation depth were studied. Through the intensity of photoacoustic signal of a certain concentration of acetylene gas under different modulation frequencies and modulation depths, the optimal modulation frequency and optimal modulation depth of the system were determined as 767 Hz and 0.3 mV. Before the detection of unknown concentration of acetylene gas, the photoacoustic detection system was calibrated by different concentrations of acetylene gas. The photoacoustic signal and gas concentrations were fitted by the least squares, which had a good linearity. The stability of the system was evaluated by Allan variance, which clearly showed that the system reached the minimum detection concentration using the average time of 200 s. The experiments show that the minimum detection limit of the system is 0.3 μL·L-1 under the atmospheric pressure with a integration time of 10ms. In this paper, the wavelet denoising technique was used for low concentration acetylene gas photoacoustic signal processing, which showed that the noise was effectively eliminated and the signal-to-noise ratio was improved. The resonant photoacoustic spectroscopy detection system designed in this paper has the advantage of easy operation and conforming the lowest detection concentration to the national standard in the detection of acetylene gas for transformer maintenance, which has a broad application prospect in the field of transformer maintenance.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:O433.5

DOI:10.3964/j.issn.1000-0593(2017)09-2673-06

基金项目:国家自然科学基金项目(41575030, 21307136)资助

收稿日期:2016-08-04

修改稿日期:2016-12-18

网络出版日期:--

作者单位    点击查看

查申龙:中国科学院合肥物质科学研究院安徽光学精密机械研究所, 安徽 合肥 230031中国科学技术大学, 安徽 合肥 230031
刘 锟:中国科学院合肥物质科学研究院安徽光学精密机械研究所, 安徽 合肥 230031
朱公栋:中国科学院合肥物质科学研究院安徽光学精密机械研究所, 安徽 合肥 230031
谈 图:中国科学院合肥物质科学研究院安徽光学精密机械研究所, 安徽 合肥 230031
汪 磊:中国科学院合肥物质科学研究院安徽光学精密机械研究所, 安徽 合肥 230031
王贵师:中国科学院合肥物质科学研究院安徽光学精密机械研究所, 安徽 合肥 230031
梅教旭:中国科学院合肥物质科学研究院安徽光学精密机械研究所, 安徽 合肥 230031
高晓明:中国科学院合肥物质科学研究院安徽光学精密机械研究所, 安徽 合肥 230031

联系人作者:查申龙(slwinner@163.com)

备注:查申龙, 1990年生, 中国科学技术大学科学岛分院博士研究生

【1】Bozóki Z, Pogany A, Szabo G. Applied Spectroscopy Reviews, 2011, 46(1): 1.

【2】Wynn C M, Palmacci S, Clark M L. Optical Engineering, 2014, 53(2): 021103.

【3】Wynn C M, Palmacci S, Clark M L. Applied Physics Letters, 2012, 101(18): 184103.

【4】Zheng H D, Yin X K, Dong L, et al. Journal of Spectroscopy, 2015, 2015: 218413.

【5】CHEN Jiu-ying, LIU Jian-guo, HE Jun-feng, et al(陈玖英, 刘建国, 何俊峰, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2014, 34(12): 3174.

【6】Koeth J, Fischer M, Legge M. Journal of Physics, 2010, 214(1): 012038.

【7】Lv G, Chang J, Wang Q. Photonic Sensors, 2014, 4(2): 113.

【8】YIN Xu-kun, ZHENG Hua-dan, DONG Lei, et al(尹旭坤, 郑华丹, 董 磊, 等). Acta Phys. Sin.(物理学报), 2015, 64(13): 130701.

【9】Liu K, Yi H M, Kosterev A A, et al. Rev. Sci. Instrum., 2010, (81): 103103.

【10】ZHAO Jun-juan, ZHAO Zhan, DU Li-dong, et al (赵俊娟, 赵 湛, 杜利东, 等). Chinese Journal of Sencors and Actuators(传感技术学报), 2012, (3): 289.

【11】QIAN Xu, CHENG Ming-xiao, WANG Xue-hua, et al(钱 旭, 程明霄, 王雪花, 等). Transducer and Microsystem Technologies(传感器与微系统), 2014, 33(12): 98.

【12】Zhou Q, Tang C, Zhu S P, et al. Journal of Spectroscopy, 2015, 2015: 737635.

【13】YUN Yu-xin, CHEN Wei-gen, SUN Cai-xin, et al(云玉新, 陈伟根, 孙才新, 等). Proceedings of the CSEE(中国电机工程学报), 2008, 28(34): 40.

【14】ZHAO Hui-ling(赵惠玲). Industrial Instrumentation & Automation(工业仪表与自动化装置), 2014, (3): 85.

引用该论文

ZHA Shen-long,LIU Kun,ZHU Gong-dong,TAN Tu,WANG Lei,WANG Gui-shi,MEI Jiao-xu,GAO Xiao-ming. Acetylene Detection Based on Resonant High Sensitive Photoacoustic Spectroscopy[J]. Spectroscopy and Spectral Analysis, 2017, 37(9): 2673-2678

查申龙,刘 锟,朱公栋,谈 图,汪 磊,王贵师,梅教旭,高晓明. 基于共振型高灵敏度光声光谱技术探测痕量乙炔气体浓度[J]. 光谱学与光谱分析, 2017, 37(9): 2673-2678

被引情况

【1】周彧,刘锟,高晓明. 离轴石英谐振光声光谱CO2传感研究. 量子电子学报, 2019, 36(2): 137-142

【2】靳华伟,谢品华,胡仁志,刘文清,李治艳,陈 浩,黄崇崇. 呼吸性粉尘吸收系数的光声光谱探测. 光谱学与光谱分析, 2019, 39(7): 1993-1998

【3】程刚,曹亚南,田兴,曹渊,刘锟. 光声池几何形状对光声光谱检测性能的影响. 光谱学与光谱分析, 2020, 40(8): 2345--1

【4】张蕾蕾,刘家祥,朱之贞,方勇华,吴越,杨文康,陶孟琪,宁志强. 基于石英增强光声光谱的H2S痕量气体检测研究. 激光与光电子学进展, 2019, 56(21): 213001--1

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF