首页 > 论文 > 光学 精密工程 > 25卷 > 8期(pp:2083-2089)

面向航天医学应用的体液预处理仪研制

Development of a body fluids pretreatment instrument for aerospace medicine

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

本文基于微流控技术研制了面向航天医学应用的体液预处理芯片及仪器,以便对航天员体液进行医学检测。体液预处理芯片集成了驱动液体和控制流路的微泵微阀,通过控制微泵微阀可实现从进样、不同功能的预处理到输出样品整个过程的自动操作。此外在常规样品预处理功能的基础上,还集成了排气泡功能,使预处理芯片能够在太空微重力环境下对有气泡的体液进行体液预处理。预处理仪集微泵微阀驱动机构和芯片液面位置检测机构于一体,能够实现多种体液预处理模式,且与芯片间无需任何管路及电连接,方便芯片更换。利用有限元仿真软件对预处理仪进行了航天环境下的各项力学分析,包括模态分析、加速度过载分析、正弦扫描分析及随机振动分析,得到了预处理仪机械结构在不同载荷条件下的应力分布,结果显示最大应力值为57.37 MPa,经过校核得知满足航天环境强度要求。最后,基于制作的排气混合预处理芯片进行了预处理实验,结果表明芯片的排气和混合效果良好。

Abstract

Pretreatment microfluidic chip and instrument for aerospace medicine were designed and developed based on microfluidics technology to realize astronauts’ body fluids (saliva, urine, blood, etc) medical assay in microgravity environment. The chips integrated with micropumps and microvalves, can automatically implement total pretreatment processes including sample introduction, different kinds of pretreatments and sample delivering out through the instrument operation. At the same time, the chips integrated a degassing function, assuring that it can be suitable to deal with the body fluids with bubbles and be used in microgravity environment. The pretreatment instrument consists of driving mechanisms of micropumps and microvalves and a detection module of liquid level, so it can be utilizable for different pretreatments without any pipe and electric connection, letting replace chips easily. All mechanical analyses in aerospace environment for instrument were conducted by finite elements simulation software, including modal analysis, overload analysis of accelerated speed, sinusoid scan analysis and random vibration analysis to obtain stress distribution of mechanical structure of pretreatment instrument in different load conditions. The results indicate that maximal stress value was 57.37 MPa, satisfying the strength requirement of space environment. Finally, pretreatment experiment was conducted based on mixed pretreatment chip of degassing mode to indicate good effect of degassing and mix of chip in the result.

中国激光微信矩阵
补充资料

中图分类号:TH703

DOI:10.3788/ope.20172508.2083

所属栏目:微纳技术与精密机械

基金项目:国家重大科学仪器设备开发专项“航天医学体液研究设备开发与应用” (2013YQ19046701)

收稿日期:2017-03-08

修改稿日期:2017-05-12

网络出版日期:--

作者单位    点击查看

叶雄英:清华大学 精密仪器系 精密测试技术及仪器国家重点实验室,北京 100084
徐文晓:清华大学 精密仪器系 精密测试技术及仪器国家重点实验室,北京 100084
谢 帅:清华大学 精密仪器系 精密测试技术及仪器国家重点实验室,北京 100084
张 帅:清华大学 精密仪器系 精密测试技术及仪器国家重点实验室,北京 100084
成一诺:清华大学 精密仪器系 精密测试技术及仪器国家重点实验室,北京 100084

联系人作者:叶雄英(xyye@mail.tsinghua.edu.cn)

备注:叶雄英(1961-),女,广东广州人,博士,教授,博士生导师,1989年于日本东京大学获得博士学位,主要研究方向为微/纳机电系统,特别是微流控技术、微纳能源、微/纳传感器等。

【1】宋健,刘旭峰,苗丹民. 航天失重环境对空间定向的影响[J]. 航天医学与医学工程,2006,19(5):388-390.
SONG J, LIU X F, MIAO D M.Effects of microgravity on human spatial orientation in space flight[J].Space Medicine&Medical Engineering, 2006,19(5):388-390. (in Chinese)

【2】万玉民,李莹辉,白延强,等. 国外航天医学研究的回顾与启示[J]. 载人航天,2011(5):7-13.
WAN Y M, LI Y H,BAI Y Q, et al..Review and inspiration of foreign space medicine research[J]. Manned Spaceflight,2011(5):7-13.(in Chinese)

【3】ABGRALL P, GUE A M. Lab-on-chip technologies: making a microfluidic network and coupling it into a complete microsystem-a review[J]. Journal of Micromech. and Microeng., 2007, 17(5):15-49.

【4】施镠佳,谭映军,董景新,等.空间培养芯片系统的弹性膜驱动样品更换[J]. 光学 精密工程,2015,23(5):1340-1346.
SHI L J, TAN Y J,DONG J X, et al..Elastic membrane actuated sample replacement for space cell culture microchips[J].Opt. Precision Eng.,2015,23(5):1340-1346. (in Chinese)

【5】赵莹莹,李勤,葛洋,等. 微流控芯片在血液检验中的应用及航天医学应用前景分析[J]. 航天医学与医学工程,2012,25(4):307-312.
ZHAO Y Y,LI Q, GE Y, et al.. Application of microfuidic chip in blood analysis and its prospects in space medicine[J]. Space Medicine & Medical Engineering,2012,25(4):307-312. (in Chinese)

【6】JAKE M, NORM W, ANDREW S, et al.. Rapid culture-independent microbial analysis aboard the international space station[J]. Astrobiology, 2009,9(8):759-775.

【7】ZHENG W, WANG Z, ZHANG W, et al.. A simple PDMS-based microfluidic channel design that removes bubbles for long-term on-chip cμLture of mammalian cells[J]. Lab on a Chip, 2010, 10(21): 2906-2910.

【8】MENG D D, KIM J, KIM C J. A degassing plate with hydrophobic bubble capture and distributed venting for microfluidic devices[J]. Journal of Micromechanics and Microengineering, 2006, 16(2): 419.

【9】KARLSSON J M,HARALDSSON T,SANDSTROM N, et al.. On-chip liquid degassing with low water loss[C]. 14th International Conference on Miniaturized Systems for Chemistry and Life Sciences, 2010,10:1790-1792.

【10】XU J, VAILLANT R, ATTINGER D. Use of a porous membrane for gas bubble removal in microfluidic channels: physical mechanisms and design criteria[J]. Microfluidics and Nanofluidics, 2010, 9(4-5): 765-772.

【11】吕超,孙安信,车英,等.离轴反射式光学系统结构随机振动响应与疲劳分析[J]. 光学 精密工程,2016,24(7):1661-1668.
LV CH, SUN A X,CHEN Y, et al.. Random vibration and fatigue analysis of off-axis reflective optical system structures[J].Opt. Precision Eng., 2016, 24 (7):1661-1668 (in Chinese)

引用该论文

YE Xiong-ying,XU Wen-xiao,XIE Shuai,ZHANG Shuai,CHENG Yi-nuo. Development of a body fluids pretreatment instrument for aerospace medicine[J]. Optics and Precision Engineering, 2017, 25(8): 2083-2089

叶雄英,徐文晓,谢 帅,张 帅,成一诺. 面向航天医学应用的体液预处理仪研制[J]. 光学 精密工程, 2017, 25(8): 2083-2089

被引情况

【1】陈立国,王兆龙,卞雄恒. 扇形电极微液滴分离的数字微流控芯片. 光学 精密工程, 2019, 27(9): 1919-1925

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF