首页 > 论文 > 中国激光 > 44卷 > 10期(pp:1004001--1)

用于零场核磁共振探测的无自旋交换弛豫原子磁力仪

Spin-Exchange Relaxation Free Atomic Magnetometer for Zero-Field Nuclear Magnetic Resonance Detection

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

研制了用于液体零场核磁共振探测的无自旋交换弛豫(SERF)铷原子磁力仪。通过实验测量原子的磁共振曲线, 验证了磁力仪工作在SERF状态, 且结果与理论相符。采用增加光强的方法提高磁力仪带宽, 满足了液体零场核磁共振的带宽需求, 磁力仪在20~300 Hz 频率范围内的灵敏度低于18 fT/Hz1/2。用基于磁力仪研制的液体零场核磁共振装置对甲酸样品进行测量, 得到了13C标记的甲酸的零场核磁共振谱, 验证了磁力仪的可用性。

Abstract

A spin-exchange relaxation free (SERF) rubidium atom magnetometer is developed for liquid-state zero-field nuclear magnetic resonance detection. The magnetic resonance curve of the atom is measured by the experiment. It is verified that the magnetometer is working at the status of SERF, and the result is consistent with the theory. Using the method of increasing the intensity of light, the bandwidth of the magnetometer is improved, and the bandwidth demand of the liquid zero field nuclear magnetic resonance is met. The sensitivity of the magnetometer in the frequency range of 20~300 Hz is lower than 18 fT/Hz1/2. A liquid-status zero-filed nuclear magnetic resonance device based on magnetometer is used to measure the the sample of formic acid, and zero-filed nuclear magnetic resonance spectra of formic acid marked by 13C is got. Which verifies the usability of magnetometer.

投稿润色
补充资料

中图分类号:O562

DOI:10.3788/cjl201744.1004001

所属栏目:测量与计量

基金项目:国家973计划(2013CB921800, 2014CB848700)、国家杰出青年科学基金(11425523)、国家自然科学基金(11375167, 11661161018, 11227901)、中国科学院B类战略性先导科技专项(XDB01030400)

收稿日期:2017-04-13

修改稿日期:2017-05-20

网络出版日期:--

作者单位    点击查看

陈伯韬:中国科学技术大学近代物理系 中国科学院微观磁共振重点实验室, 安徽 合肥 230026
江 敏:中国科学技术大学近代物理系 中国科学院微观磁共振重点实验室, 安徽 合肥 230026
季云兰:中国科学技术大学近代物理系 中国科学院微观磁共振重点实验室, 安徽 合肥 230026
边 纪:中国科学技术大学近代物理系 中国科学院微观磁共振重点实验室, 安徽 合肥 230026
徐文杰:中国科学技术大学近代物理系 中国科学院微观磁共振重点实验室, 安徽 合肥 230026
张 晗:中国科学技术大学近代物理系 中国科学院微观磁共振重点实验室, 安徽 合肥 230026
彭新华:中国科学技术大学近代物理系 中国科学院微观磁共振重点实验室, 安徽 合肥 230026中国科学技术大学量子信息与量子科技前沿协同创新中心, 安徽 合肥 230026

联系人作者:陈伯韬(chenbtcs@mail.ustc.edu.cn)

备注:陈伯韬(1991-), 男, 硕士研究生, 主要从事基于原子磁力仪的低场核磁共振方面的研究。

【1】Bloom A L. Principles of operation of the rubidium vapor magnetometer[J]. Applied Optics, 1962, 1(1): 61-68.

【2】Dupont-Roc J, Haroche S, Cohen-Tannoudji C. Detection of very weak magnetic fields (10-9 gauss) by87Rb zero-field level crossing resonances[J]. Physics Letters A, 1969, 28(9): 638-639.

【3】Budker D, Romalis M. Optical magnetometry[J]. Nature Physics, 2007, 3(4): 227-234.

【4】Savukov I M, Seltzer S J, Romalis M V, et al. Tunable atomic magnetometer for detection of radio-frequency magnetic fields[J]. Physical Review Letters, 2005, 95(6): 063004.

【5】Budker D, Kimball D F, Rochester S M, et al. Sensitive magnetometry based on nonlinear magneto-optical rotation[J]. Physical Review A, 2000, 62(4): 043403.

【6】Smullin S J, Savukov I M, Vasilakis G, et al. Low-noise high-density alkali-metal scalar magnetometer[J]. Physical Review A, 2009, 80(3): 033420.

【7】Sheng D, Li S, Dural N, et al. Subfemtotesla scalar atomic magnetometry using multipass cells[J]. Physical Review Letters, 2013, 110(16): 160802.

【8】Allred J C, Lyman R N, Kornack T W, et al. High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation[J]. Physical Review Letters, 2002, 89(13): 130801.

【9】Kominis I K, Kornack T W, Allred J C, et al. A subfemtotesla multichannel atomic magnetometer[J]. Nature, 2003, 422(6932): 596-599.

【10】Happer W, Tang H. Spin-exchange shift and narrowing of magnetic resonance lines in optically pumped alkali vapors[J]. Physical Review Letters, 1973, 31(5): 273-276.

【11】Happer W, Tam A C. Effect of rapid spin exchange on the magnetic-resonance spectrum of alkali vapors[J]. Physical Review A, 1977, 16(5): 1877-1891.

【12】Romalis M V, Savukov I M. Effects of spin-exchange collisions in a high-density alkali-metal vapor in low magnetic fields[J]. Physical Review A, 2005, 71(2): 023405.

【13】Dang H B, Maloof A C, Romalis M V. Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer[J]. Applied Physics Letters, 2010, 97(15): 151110.

【14】Drung D, Abmann C, Beyer J, et al. Highly sensitive and easy-to-use SQUID sensors[J]. IEEE Transactions on Applied Superconductivity, 2007, 17(2): 699-704.

【15】Brown J M, Smullin S J, Kornack T W, et al. New limit on Lorentz-and CPT-violating neutron spin interactions[J]. Physical Review Letters, 2010, 105(15): 151604.

【16】Kornack T W, Ghosh R K, Romalis M V. Nuclear spin gyroscope based on an atomic comagnetometer[J]. Physical Review Letters, 2005, 95(23): 230801.

【17】Wyllie R, Kauer M, Wakai R T, et al. Optical magnetometer array for fetal magnetocardiography[J]. Optics Letters, 2012, 37(12): 2247-2249.

【18】Sander T H, Preusser J, Mhaskar R, et al. Magnetoencephalography with a chip-scale atomic magnetometer[J]. Biomedical Optics Express, 2012, 3(5): 981-990.

【19】Savukov I M, Romalis M V. NMR detection with an atomic magnetometer[J]. Physical Review Letters, 2005, 94(12): 123001.

【20】Ledbetter M P, Crawford C W, Pines A, et al. Optical detection of NMR J-spectra at zero magnetic field[J]. Journal of Magnetic Resonance, 2009, 199(1): 25-29.

【21】Li Shuguang, Zhou Xiang, Cao Xiaochao, et al. All-optical high sensitive atomic magnetometer[J]. Acta Physica Sinica, 2010, 59(2): 877-882.
李曙光, 周翔, 曹晓超, 等. 全光学高灵敏度铷原子磁力仪的研究[J]. 物理学报, 2010, 59(2): 877-882.

【22】Wang Feng, Liu Qiang, Zeng Xianjin, et al. Study of resonance curve width in Cs vapor magnetometer[J]. Journal of Optoelectronics·Laser, 2010, 21(6): 845-847.
王丰, 刘强, 曾宪金, 等. Cs原子磁力仪共振谱线宽度的研究[J]. 光电子·激光, 2010, 21(6): 845-847.

【23】Ding Zhichao, Li Yingying, Wang Zhiguo, et al. Research of rubidium atomic magnetometer based on Faraday rotation detection[J]. Chines J Lasers, 2015, 42(4): 0408003.
丁志超, 李莹颖, 汪之国, 等. 基于法拉第旋转检测的铷原子磁力仪研究[J]. 中国激光, 2015, 42(4): 0408003.

【24】Fang J, Wang T, Zhang H, et al. Optimizations of spin-exchange relaxation-free magnetometer based on potassium and rubidium hybrid optical pumping[J]. Review of Scientific Instruments, 2014, 85(12): 123104.

【25】Fu J Q, Du P C, Zhou Q, et al. Spin dynamics of the potassium magnetometer in spin-exchange relaxation free regime[J]. Chinese Physics B, 2016, 25(1): 010302.

【26】Weitekamp D P, Bielecki A, Zax D, et al. Zero-field nuclear magnetic resonance[J]. Physical Review Letters, 1983, 50(22): 1807-1810.

【27】McDermott R, Trabesinger A H, Mück M, et al. Liquid-state NMR and scalar couplings in microtesla magnetic fields[J]. Science, 2002, 295(5563): 2247-2249.

【28】Appelt S, Kühn H, Hsing F W, et al. Chemical analysis by ultrahigh-resolution nuclear magnetic resonance in the Earth′s magnetic field[J]. Nature Physics, 2006, 2(2): 105-109.

【29】Blanchard J W, Ledbetter M P, Theis T, et al. High-resolution zero-field NMR J-spectroscopy of aromatic compounds[J]. Journal of the American Chemical Society, 2013, 135(9): 3607-3612.

【30】Ledbetter M P, Pustelny S, Budker D, et al. Liquid-state nuclear spin comagnetometers[J]. Physical Review Letters, 2012, 108(24): 243001.

【31】Luo Z H, Lei C, Li J, et al. Experimental observation of topological transitions in interacting multispin systems[J]. Physical Review A, 2016, 93(5): 052116.

【32】Emondts M, Ledbetter M P, Pustelny S, et al. Long-lived heteronuclear spin-singlet states in liquids at a zero magnetic field[J]. Physical Review Letters, 2014, 112(7): 077601.

【33】Theis T, Ganssle P, Kervern G, et al. Parahydrogen-enhanced zero-field nuclear magnetic resonance[J]. Nature Physics, 2011, 7(7): 571-575.

【34】Ledbetter M P, Theis T, Blanchard J W, et al. Near-zero-field nuclear magnetic resonance[J]. Physical Review Letters, 2011, 107(10): 107601.

【35】Liu G B, Li X F, Sun X P, et al. Ultralow field NMR spectrometer with an atomic magnetometer near room temperature[J]. Journal of Magnetic Resonance, 2013, 237: 158-163.

【36】Appelt S, Ben-Amar B A, Young A R, et al. Light narrowing of rubidium magnetic-resonance lines in high-pressure optical-pumping cells[J]. Physical Review A, 1999, 59(3): 2078-2084.

【37】Ledbetter M P, Savukov I M, Acosta V M, et al. Spin-exchange-relaxation-free magnetometry with Cs vapor[J]. Physical Review A, 2008, 77(3): 033408.

【38】Vasilakis G. Precision measurements of spin interactions with high density atomic vapors[D]. Princeton: Princeton University, 2011: 90-95.

【39】Butler M C, Ledbetter M P, Theis T, et al. Multiplets at zero magnetic field: the geometry of zero-field NMR[J]. The Journal of Chemical Physics, 2013, 138(18): 184202.

【40】Blanchard J W. Zero and ultra-low-field nuclear magnetic resonance spectroscopy via optical magnetometry[D]. Berkeley: University of California, 2014: 51-56.

引用该论文

Chen Botao,Jiang Min,Ji Yunlan,Bian Ji,Xu Wenjie,Zhang Han,Peng Xinhu. Spin-Exchange Relaxation Free Atomic Magnetometer for Zero-Field Nuclear Magnetic Resonance Detection[J]. Chinese Journal of Lasers, 2017, 44(10): 1004001

陈伯韬,江 敏,季云兰,边 纪,徐文杰,张 晗,彭新华. 用于零场核磁共振探测的无自旋交换弛豫原子磁力仪[J]. 中国激光, 2017, 44(10): 1004001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF