首页 > 论文 > 光学 精密工程 > 25卷 > 9期(pp:2347-2358)

叠堆式超磁致伸缩致动器磁场分布建模及分析

Modeling and analysis of magnetic field distribution for stack giant magnetostrictive actuator

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

为提高超磁致伸缩致动器(GMA)偏置磁场的均匀度, 设计了叠堆式超磁致伸缩致动器(SGMA), 建立了SGMA的磁场分布模型, 并对模型进行分析研究。首先, 通过分析传统GMA偏磁施加方式的特点和不足, 采用永磁体和GMM棒交替排布的结构形式, 设计了SGMA; 然后, 将磁路模型和毕奥-萨伐尔定律相结合, 建立了能够准确描述SGMA磁场特点的磁场分布模型; 接着, 利用所建立磁场分布模型分析了不同参数对SGMA磁场分布特征的影响, 提出了SGMA结构设计方法; 最后, 通过实验完成了模型验证。结果表明: 采用本文建立的模型描述SGMA磁场分布时, 最大相对误差低于4%; 在预测SGMA的输出位移时, 最大相对误差低于5%。该模型有助于准确刻画SGMA的工作状态, 提高SGMA的系统精度, 并为SGMA结构设计提供参考依据。

Abstract

In this paper, a kind of Stack Giant Magnetostrictive Actuator (SGMA) was designed, then the magnetic field distribution model of SGMA was established, and analytical research on model was conducted to increase uniformity of bias magnetic field of GMA. Firstly, given the characteristics and drawbacks of infliction way of bias magnetic field in traditional GMA, structural form of alternative arrangement for permanent magnet and GMM rod was adopted to design SGMA. Then by combining magnetic circuit model with Biot-Savart law, magnetic distribution model can accurately describe magnetic feature of SGMA was establish. Subsequently, the influence of different parameters on magnetic field distribution feature was analyzed on established model, and structural design method of SGMA was proposed. Finally, model verification experiments were conducted. The result indicates: maximum relative error is lower than 4% when using established model to describe magnetic field distribution of SGMA; maximum relative error is lower than 5% at the time of predicting output displacement of SGMA. The established model in this paper can describe work state of SGMA accurately, increase system precision of SGMA and provide reference basis for structural design of SGMA.

中国激光微信矩阵
补充资料

中图分类号:TP271.2;TM274

DOI:10.3788/ope.20172509.2347

所属栏目:微纳技术与精密机械

基金项目:国家自然科学基金资助项目(No.51275525)

收稿日期:2017-04-10

修改稿日期:2017-06-22

网络出版日期:--

作者单位    点击查看

何忠波:军械工程学院 车辆与电气工程系, 河北 石家庄 050003
荣 策:军械工程学院 车辆与电气工程系, 河北 石家庄 050003
李冬伟:军械工程学院 车辆与电气工程系, 河北 石家庄 050003
薛光明:军械工程学院 车辆与电气工程系, 河北 石家庄 050003
郑佳伟:军械工程学院 车辆与电气工程系, 河北 石家庄 050003

联系人作者:何忠波(hzb_hcl_xq@sina.com)

备注:何忠波(1968-), 男, 吉林长春人, 教授, 博士生导师, 1991年于军械工程学院获得学士学位, 2004年于北京理工大学获得博士学位, 主要从事智能材料及应用方面的研究。

【1】YANG ZH SH, HE ZH B, LI D W, et al.. Direct drive servo valve based on magnetostrictive actuator: multi-coupled modeling and its compound control strategy [J].Sensors and Actuators: Physical, 2015, 235: 119-130.

【2】LIU H F, WANG S J, ZHANG Y. Study on the giant magnetostrictive vibration-power generation method for battery-less tire pressure monitoring system [J].Journal of Mechanical Engineering Science, 2015, 229(9): 1639-1651.

【3】张雷, 邬义杰, 刘孝亮, 等. 用于异形孔精密加工的超磁致伸缩构件的线性化迟滞建模[J].光学 精密工程, 2012, 20(2): 287-295.
ZHANG L, WU Y J, LIU X L, et al.. Linearity hysteresis model of giant magnetostrictive components for non-cylindrical hole precision mechining [J]. Opt. Precision Eng., 2012, 20(2): 287-295.(in Chinese)

【4】翟鹏, 肖博涵, 贺凯, 等. 超磁致伸缩致动器的复合反馈控制及其在变椭圆销孔精密加工中的应用[J].光学 精密工程, 2016, 24(6): 1389-1398.
ZHAI P, XIAO B H, HE K, et al.. Composite backward control for GMA and its application in high precision mechining of variable ellipse pinhole [J]. Opt. Precision Eng., 2016, 24(6): 1389-1398.(in Chinese)

【5】贾振元, 郭东明. 超磁致伸缩微位移执行器原理与应用[M]. 北京: 科学出版社, 2008.
JIA ZH Y, GUO D M.Theory and Application of Giant Magnetostrictive Micro displacement Actuator [M]. Beijing: Science Press, 2008.(in Chinese)

【6】XUE G M, HE ZH B, LI D W, et al.. Analysis of the giant magnetostrictive actuator with strong bias magnetic field [J].Journal of Magnetism and Magnetic Materials, 2015, 394: 416-421.

【7】SMITH R C. Inverse compensation for hysteresis in magnetostrictive transducers [R]. Center for Research in Scientific Computation Department of Mathematics, Raleigh, NC, 1998.

【8】YANG ZH SH, HE ZH B, LI D W, et al.. Bias magnetic field of stack giant magnetostrictive actuator: design, analysis and optimization [J]. Advances in Materials Science and Engineering, 2016: 1-13.

【9】HALL D L. Dynamics and vibrations of magnetostrictive transducers [D].Ames Iowa: Iowa State University, 1994.

【10】WANG X Y, WU J J, JIA ZH Y, et al.. Mechanical and magnetic analysis of giant magnetostrictive transducer[J]. Applied Mechanics and Materials, 2011, 79: 166-171.

【11】杨远飞, 张天丽, 蒋成保. 用于GMA 的新型永磁偏置闭合磁路[J].北京航空航天大学学报, 2012, 38(12): 1682-1685.
YANG Y F, ZHANG T L, JIANG CH B. Novel closed magnetic circuit with permanent biased for giant magnetostrictive actuator [J]. Journal of Beijing University of Aeroautics and Astronautics, 2012, 38(12): 1682-1685.(in Chinese)

【12】ZHANG H, ZHANG T L, JIANG CH B. Design of a uniform bias magnetic field for giant magnetostrictive actuators applying triple-ring magnets [J]. Smart Materials and Structures, 2013, 22(11): 115009-115014.

【13】牟星, 唐海军, 高学绪, 等. 超磁致伸缩致动器中偏置磁场的有限元模拟[J].磁性材料及器件, 2014, 45(4): 6-10.
MOU X, TANG H J, GAO X X, et al.. Finite element modeling of magnetic bias field for magnetostrictive actuator [J]. Journal of Magnetic Materials and Devices, 2014, 45(4): 6-10.(in Chinese)

【14】STACHOWIAK D. The influence of magnetic bias and prestress on magnetostriction characteristics of a giant magnetostrictive actuator [J].Przeglad Elektrotechniczny, 2013, 89: 233-236.

【15】杨旭磊, 朱玉川, 费尚书, 等. 超磁致伸缩电静液作动器磁场分析与优化[J].航空动力学报, 2016, 31(9): 2210-2217.
YANG X L, ZHU Y CH, FEI SH SH, et al.. Magnetic field analysis and optimization of giant magnetostrictive electro-hydrostatic actuator [J]. Journal of Aerospace Power, 2016, 31(9): 2210-2217.(in Chinese)

【16】IDZIAK P, KOWALSKI K, NOWAK L, et al.. FE transient analysis of the magnetostrictive actuator [J].International Journal of Applied Electromagnetics and Mechanics, 2011, 51(s1): S81-S87.

【17】刘慧芳, 王汉玉, 王洁, 等. 精密磁致伸缩致动器的动态非线性多场耦合建模[J]. 光学 精密工程, 2016, 24(5): 1128-1137.
LIU H F, WANG H Y, WANG J, et al.. Modeling of dynamic nonlinear multi-field coupling for precision magnetostrictive actautor [J]. Opt. Precision Eng., 2016, 24(5): 1128-1137.(in Chinese)

【18】XUE G M, ZHANG P L, HE ZH B, et al.. Revised reluctance model of the axial magnetic intensity within giant magnetostrictive rod [J].Proceedings of the Institution of Mechanical Engineers Part C: Journal of Mechanial Engineering Science, 2016, 203-210: 1-12.

【19】UMENEI A E, MELIKHOV Y, JILES D C. Analytic solution for variations of magnetic fields in closed circuit: examination of deviations from the “standard” Ampere Law equation [J].IEEE Transactions on Magnetics, 2011, 47(4): 734-737.

引用该论文

HE Zhong-bo,RONG Ce,LI Dong-wei,XUE Guang-ming,ZHENG Jia-wei. Modeling and analysis of magnetic field distribution for stack giant magnetostrictive actuator[J]. Optics and Precision Engineering, 2017, 25(9): 2347-2358

何忠波,荣 策,李冬伟,薛光明,郑佳伟. 叠堆式超磁致伸缩致动器磁场分布建模及分析[J]. 光学 精密工程, 2017, 25(9): 2347-2358

被引情况

【1】何忠波,荣 策,周景涛,薛光明,郑佳伟. 叠堆式超磁致伸缩致动器的模型预测滑模控制. 光学 精密工程, 2018, 26(7): 1680-1690

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF