光子学报, 2017, 46 (8): 0823002, 网络出版: 2017-10-30  

量子点发光二极管功能层厚度确定方法

Thickness Estimation Method for Every Functional Layer of QLEDs
作者单位
1 北京信息科技大学 自动化学院,北京100101
2 北京交通大学 电子信息工程学院,北京100044
摘要
为改善量子点发光二极管器件载流子注入平衡,提出一种量子点发光二极管各功能层厚度的确定方法.首先选定量子点发光层厚度,基于隧穿模型进行仿真分析确定电子传输层厚度;然后采用空间电荷限制电流模型进行仿真分析确定空穴传输层厚度.采用CdSe/ZnS 量子点作为发光层、poly-TPD 作为空穴传输层、Alq3作为电子传输层,按照该方法仿真分析得到各功能层厚度进行旋涂-蒸镀法实物器件制备.对比实验结果表明:当poly-TPD、QDs及Alq3厚度分别为45 nm、25 nm及35 nm时,获得了较高的发光效率及色纯度,器件性能最好.该方法确定的各功能层厚度有助于减少载流子在发光界面积累,获得载流子的注入平衡,从而改善QLEDs发光性能.
Abstract
To balance the carrier injection in Quantum Dot Light Emitting Diode (QLEDs), a method to determine the thickness of each functional layer was proposed. The thickness of EL was set firstly, the thickness of Electron Transport Layer (ETL) was determined through tunneling model. On this basis, the thickness of Hole Injection Layer (HTL) was determined at last using space charge limited current model. Devices using red light CdSe/ZnS quantum dot was used as the Light-Emitting Layer (EL), poly-TPD as the HTL, Alq3 as the ETL were fabricated through spin-coating and vacuum evaporation with the thickness of each layer obtained from the simulation results. Experiment results show that compared with other devices, the device with a 45 nm thickness of poly-TPD, 25 nm QDs and 35 nm Alq3 has a higher luminous efficiency and color purity. QLEDs with the thickness of each layer chosen according to the method proposed have a more balanced carrier injection which is advantageous in improving device performance.

陈雯柏, 叶继兴, 马航, 李邓化. 量子点发光二极管功能层厚度确定方法[J]. 光子学报, 2017, 46(8): 0823002. CHEN Wen-bai, YE Ji-xing, MA Hang, LI Deng-hua. Thickness Estimation Method for Every Functional Layer of QLEDs[J]. ACTA PHOTONICA SINICA, 2017, 46(8): 0823002.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!