首页 > 论文 > 光学学报 > 37卷 > 11期(pp:1115004--1)

基于改进Census变换和异常值剔除的抗噪立体匹配算法

Anti-Noise Stereo Matching Algorithm Based on Improved Census Transform and Outlier Elimination

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

针对Census变换易受噪声影响使得立体匹配算法难以获取高匹配精度的问题,提出了一种改进Census变换和异常值剔除的抗噪立体匹配算法。在初始匹配代价阶段,该方法首先将窗口邻域中值作为参考值并通过映射函数控制异常值,提高了单像素匹配代价的可靠性;然后在代价聚合阶段,对动态聚合窗口中初始代价值进行异常值剔除;最后通过视差计算、视差优化得到最终的视差图。在VS2013软件平台上采用Middlebury标准测试图对初始匹配代价、代价聚合、最终视差图阶段进行测试。实验结果表明,本文算法的抗噪性能优于现有Census变换算法,且错误匹配率达到5.71%。

Abstract

The Census transform is sensitive to noise, so it is difficult to obtain high matching accuracy with stereo matching algorithm. An anti-noise stereo matching algorithm based on the improved Census transform and outlier elimination is proposed. Firstly, at the initial match cost stage, the median of the window neighborhood is taken as the reference value and the outliers are controlled by the mapping function, which improves the reliability of the single pixel matching cost. At the cost aggregation stage, the outliers are eliminated from the initial cost value of dynamic aggregation window. Finally, the final disparity maps are obtained by disparity calculation and disparity optimization. The Middlebury benchmark images are used to test the stages of the initial matching cost, cost aggregation, and final disparity map on the VS2013 software platform. Experimental results show that the proposed algorithm has better noise-robust performance than the existing Census transform algorithms, and the error matching rate is 5.71%.

投稿润色
补充资料

中图分类号:TN911.73

DOI:10.3788/aos201737.1115004

所属栏目:机器视觉

基金项目:国家自然科学基金(61471230)

收稿日期:2017-05-31

修改稿日期:2017-07-07

网络出版日期:--

作者单位    点击查看

彭新俊:上海大学通信与信息工程学院, 上海 200444
韩 军:上海大学通信与信息工程学院, 上海 200444
汤 踊:上海大学通信与信息工程学院, 上海 200444
尚裕之:上海大学通信与信息工程学院, 上海 200444
俞玉瑾:上海大学通信与信息工程学院, 上海 200444

联系人作者:韩军(hanjun@shu.edu.cn)

备注:彭新俊(1993-),男,硕士研究生,主要从事图像处理、立体匹配等方面的研究。

【1】Scharstein D, Szeliski R. Ataxonomy and evaluation of dense two-frame stereo correspondence algorithms[J]. International Journal of Computer Vision, 2002, 47(1): 7-42.

【2】Scharstein D, Szeliski R, Hirschmüller H. The middle stereo vision page[EB/OL]. [2017-05-31]. http: ∥vision.middlebury.edu/stereo/.

【3】Sun J, Zheng N N, Shum H Y. Stereo matching using belief propagation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(7): 787-800.

【4】Besse F, Rother C, Fitzgibbon A, et al. PMBP: patchmatch belief propagation for correspondence field estimation[J]. International Journal of Computer Vision, 2014, 110(1): 2-13.

【5】Yang Q, Wang L, Yang R, et al. Stereo matching with color-weighted correlation, hierarchical belief propagation, and occlusion handling[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(3): 492-504.

【6】Worby J, Maclean W J. Establishing visual correspondence from multi-resolution graph cuts for stereo-motion[C]. IEEE Fourth Canadian Conference on Computer and Robot Vision, 2007: 313-320.

【7】Gong Wenbiao, Gu Guohua, Qian Weixian, et al. Stereo matching algorithm based on image sgmentation and adaptive support weight[J]. Acta Optica Sinica, 2015, 35(s2): s210002.
龚文彪, 顾国华, 钱惟贤, 等. 基于图像分割和自适应支撑权重的立体匹配算法[J]. 光学学报, 2015, 35(s2): s210002.

【8】Mattoccia S, Giardino S, Gambini A. Accurate and efficient cost aggregation strategy for stereo correspondence based on approximated joint bilateral filtering[C]. Asian Conference on Computer Vision, 2009: 371-380.

【9】Zhang K, Lu J, Lafruit G. Cross-based local stereo matching using orthogonal integral images[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2009, 19(7): 1073-1079.

【10】Mei X, Sun X, Zhou M, et al. On building an accurate stereo matching system on graphics hardware[C]. IEEE International Conference on Computer Vision Workshops, 2011: 467-474.

【11】Zhang K, Fang Y, Min D, et al. Cross-scale cost aggregation for stereo matching[C]. IEEE Conference on Computer Vision and Pattern Recognition, 2014: 1590-1597.

【12】Hirschmuller H, Scharstein D. Evaluation of cost functions for stereo matching[C]. IEEE Conference on Computer Vision and Pattern Recognition, 2007: 1-8.

【13】Zabih R, Woodfill J. Non-parametric local transforms for computing visual correspondence[C]. European Conference on Computer Vision, 1994, 801: 151-158.

【14】Lim J, Kim Y, Lee S. A census transform-based robust stereo matching under radiometric changes[C]. Signal and Information Processing Association Annual Summit and Conference, 2016: 1-4.

【15】Chang N Y C, Tsai T H, Hsu B H, et al. Algorithm and architecture of disparity estimation with mini-census adaptive support weight[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2010, 20(6): 792-805.

【16】Wang Junzheng, Zhu Huajian, Li Jing. A census transform based stereo maching algorithm using variable support-weight[J]. Transactions of Beijing Institute of Technology, 2013, 33(7): 704-710.
王军政, 朱华健, 李静. 一种基于Census变换的可变权值立体匹配算法[J]. 北京理工大学学报, 2013, 33(7): 704-710.

【17】Zhu Shiping, Yan Lina, Li Zheng. Stereo matching algorithm based on improved census transform and dynamic programming[J]. Acta Optica Sinica, 2016, 36(4): 0415001.
祝世平, 闫利那, 李政. 基于改进Census变换和动态规划的立体匹配算法[J]. 光学学报, 2016, 36(4): 0415001.

【18】Hirschm H. Stereoprocessing by semiglobal matching and mutual information[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30(2): 328-341.

【19】Chang X, Zhou Z, Wang L, et al. Real-time accurate stereo matching using modified two-pass aggregation and winner-take-all guided dynamic programming[C]. International Conference on 3D Imaging, Modeling, Processing, Visualization and Transmission, 2011: 73-79.

【20】Yang Q, Wang L, Yang R, et al. Stereo matching with color-weighted correlation, hierachical belief propagation and occlusion handling[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 31(3): 2347-2354.

【21】Gales G, Crouzil A, Chambon S. A region-based randomized voting scheme for stereo matching[J]. Advances in Visual Computing, 2010: 182-191.

【22】Larsen E S, Mordohai P, Pollefeys M, et al. Temporally consistent reconstruction from multiple video streams using enhanced belief propagation[C]. IEEE 11th International Conference on Computer Vision, 2007: 1-8.

【23】Humenberger M, Zinner C, Weber M, et al. A fast stereo matching algorithm suitable for embedded real-time systems[J]. Computer Vision and Image Understanding, 2010, 114(11): 1180-1202.

【24】Ma Li, Li Jingjiao, Ma Ji. Modified census transform with related information of neighborhood for stereo matching algorithm[J]. Computer Engineering and Applications, 2014, 50(24): 16-22.
马利, 李晶皎, 马技. 邻域相关信息的改进Census变换立体匹配算法[J]. 计算机工程与应用, 2014, 50(24): 16-22.

引用该论文

Peng Xinjun,Han Jun,Tang Yong,Shang Yuzhi,Yu Yujin. Anti-Noise Stereo Matching Algorithm Based on Improved Census Transform and Outlier Elimination[J]. Acta Optica Sinica, 2017, 37(11): 1115004

彭新俊,韩 军,汤 踊,尚裕之,俞玉瑾. 基于改进Census变换和异常值剔除的抗噪立体匹配算法[J]. 光学学报, 2017, 37(11): 1115004

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF