首页 > 论文 > 光学学报 > 37卷 > 11期(pp:1130003--1)

基于优选波长的多光谱检测系统快速检测猪肉中挥发性盐基氮的含量

Rapid Determination of Content of Total Volatile Basic Nitrogen in Pork Based on Multispectral Detection System with Optimal Wavelength

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

挥发性盐基氮(TVB-N)含量是评价猪肉新鲜度的重要理化指标。为了实现快速、无损检测猪肉的新鲜度,优选出与猪肉中TVB-N含量相关的特征波长,将包含特征波长的发光二极管(LED)光源用于多光谱检测系统,测定了猪肉中TVB-N的含量。首先利用可见-近红外(VIS-NIR)高光谱系统对猪肉进行检测,获取高光谱反射率数据,并采用一阶导数(FD)法、标准正态变量变换(SNV)以及其他预处理方法建立猪肉中TVB-N含量的偏最小二乘回归(PLSR)模型;然后分别利用逐步回归算法(SWA)、连续投影算法(SPA)、基因遗传算法(GA)筛选出与TVB-N含量相关的特征波长,利用筛选出的特征波长分别建立PLSR模型与多元线性回归(MLR)模型,比较模型结果后进一步优选特征波长;最后,将含有特征波长的LED光源用于多光谱检测系统,并建立PLSR模型与MLR模型,从而完成对猪肉中TVB-N含量的测定。实验结果表明:利用SWA、SPA、GA这3种算法筛选出的特征波长能够很好地反映全光谱的信息,建立的模型效果较好,变量数大大减少;包含优选特征波长的LED光源在多光谱检测系统中能很好地检测猪肉中的TVB-N含量; MLR模型结果好于PLSR模型结果,MLR模型的校正集相关系数和校正集均方根误差分别为0.9050和3.63×10-5,预测集相关系数和预测集均方根误差分别为0.9040和3.81×10-5。

Abstract

The content of total volatile basic nitrogen (TVB-N) is an important index for evaluation of pork freshness. To achieve rapid and nondestructive detection of pork freshness, we use a light-emitting diode (LED) light source containing optimal characteristic wavelengths to set up a multispectral detection system by selecting optimal characteristic wavelengths related to the content of TVB-N in pork, and the content of TVB-N in pork is detected by the detection system. Firstly, a visible near infrared (VIS-NIR) hyperspectral system is applied to detect pork to acquire hyperspectral reflectance data, and then different preprocessing algorithms including the first derivative (FD), standard normal variable transformation (SNV), and other methods are utilized to build partial least squares regression (PLSR) model of the TVB-N content in pork. Secondly, some variable selection methods including the step wise algorithm (SWA), successive projections algorithm (SPA), and genetic algorithm (GA) are used to screen the characteristic wavelengths related to TVB-N content. PLSR model and multiple linear regression (MLR) model are established by these characteristic wavelengths. The model results are compared to choose optimal characteristic wavelengths. Lastly, the LED light source containing characteristic wavelengths is used in the multispectral detection system to establish PLSR and MLR models, so that the detection of TVB-N content in pork is completed. The results indicate that the screening characteristic wavelengths by using the SWA, SPA, and GA can reflect full spectral information well. The effect of the established model is good, and the number of variable decreases greatly. The LED light source containing characteristic wavelengths can detect the TVB-N content in pork well in the multispectral detection system. The results of the established MLR model are better than those of the PLSR model. The correlation coefficient and square error of calibration (SEC) set of the MLR model are 0.9050 and 3.63×10-5, respectively, and the correlation coefficient and square error of prediction (SEP) set are 0.9040 and 3.81×10-5, respectively.

投稿润色
补充资料

中图分类号:O657.33

DOI:10.3788/aos201737.1130003

所属栏目:光谱学

基金项目:国家重点研发计划(2016YFD0401205)

收稿日期:2017-07-03

修改稿日期:2017-07-11

网络出版日期:--

作者单位    点击查看

魏文松:中国农业大学工学院国家农产品加工技术装备研发分中心, 北京 100083
彭彦昆:中国农业大学工学院国家农产品加工技术装备研发分中心, 北京 100083
郑晓春:中国农业大学工学院国家农产品加工技术装备研发分中心, 北京 100083
王文秀:中国农业大学工学院国家农产品加工技术装备研发分中心, 北京 100083
田 芳:中国农业大学工学院国家农产品加工技术装备研发分中心, 北京 100083

联系人作者:彭彦昆(ypeng@cau.edu.cn)

备注:魏文松(1989-),男,博士研究生,主要从事农畜产品无损检测方面的研究。

【1】Cai Jianrong, Wan Xinmin, Chen Quansheng. Feasibility study for the use of near-infrared spectroscopy in the quantitative analysis of TVB-N content in pork[J]. Acta Optica Sinica, 2009, 29(10): 2808-2812.
蔡健荣, 万新民, 陈全胜. 近红外光谱法快速检测猪肉中挥发性盐基氮的含量[J]. 光学学报, 2009, 29(10): 2808-2812.

【2】中华人民共和国国家卫生和计划生育委员会, 国家食品药品监督管理总局. 食品安全国家标准 鲜(冻)畜、禽产品: GB 2707-2016[S]. 北京: 中国标准出版社, 2016.

【3】Peng Yangsi, Liu Pei, Zhang Hua. The comparison of methods to detect TVB-N in meat and meat products[J]. Food Research and Development, 2016, 37(4): 152-154.
彭杨思, 刘培, 章骅. 肉与肉制品中挥发性盐基氮测定方法的比较[J]. 食品研究与开发, 2016, 37(4): 152-154.

【4】Liu Xueyun. Status and development direction of detection method for TVB-N[J]. Academic Periodical of Farm Products Processing, 2014(1): 51-53.
刘雪云. 挥发性盐基氮检测方法的现状及研究方向[J]. 农产品加工(学刊), 2014(1): 51-53.

【5】Peng Yankun, Zhang Leilei. Advancement and trend of non-destructive detection technology for assessing agro-products quality and safety[J]. Journal of Food Safety and Quality, 2012, 3(6): 561-568.
彭彦昆, 张雷蕾. 农畜产品品质安全光学无损检测技术的进展和趋势[J]. 食品安全质量检测学报, 2012, 3(6): 561-568.

【6】Yu Xinyang, Lu Qipeng, Gao Hongzhi, et al. Current status and prospects of portable NIR spectrometer[J]. Spectroscopy and Spectral Analysis, 2013, 33(11): 2983-2988.
于新洋, 卢启鹏, 高洪智, 等. 便携式近红外光谱仪器现状及展望[J]. 光谱学与光谱分析, 2013, 33(11): 2983-2988.

【7】Li Cuiling, Peng Yankun, Tang Xiuying. Device for rapid nondestructive detection of pork freshness based on multispectral imaging technology[J]. Transactions of the Chinese Society of Agricultural Machinery, 2012, 43(s1): 202-206.
李翠玲, 彭彦昆, 汤修映. 基于多光谱成像技术的猪肉新鲜度无损快速检测装置[J]. 农业机械学报, 2012, 43(s1): 202-206.

【8】Lin Wan, Peng Yankun, Wang Caiping. Design of portable device for rapid nondestructive detection of fresh meat quality[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(7): 243-249.
林琬, 彭彦昆, 王彩萍. 便携式生鲜肉品质无损快速检测装置的设计[J]. 农业工程学报, 2014, 30(7): 243-249.

【9】Guo Hui, Peng Yankun, Jiang Fachao, et al. Development of conveyable beef-marbling detection system[J]. Transactions of the Chinese Society of Agricultural Machinery, 2012, 43(s1): 207-210.
郭辉, 彭彦昆, 江发潮, 等. 手持式牛肉大理石花纹检测系统[J]. 农业机械学报, 2012, 43(s1): 207-210.

【10】Sun Hongwei, Peng Yankun, Lin Wan. Development of a portable device for simultaneous detection on mufti-quality attributes of fresh pork[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(20): 268-273.
孙宏伟, 彭彦昆, 林琬. 便携式生鲜猪肉多品质参数同时检测装置研发[J]. 农业工程学报, 2015, 31(20): 268-273.

【11】Wei W S, Peng Y K, Li Y Y, et al. Lightweight portable nondestructive detection technique for assessing meat freshness attributes based on light emitting diode array[C]. ASABE Annual International Meeting, 2015: 152189624.

【12】Wang Wenxiu, Peng Yankun, Sun Hongwei, et al. Development of simultaneous detection device for multi-quality parameters of meat based on Vis/NIR spectroscopy[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(23): 290-296.
王文秀, 彭彦昆, 孙宏伟, 等. 基于可见/近红外光谱生鲜肉多品质参数检测装置研发[J]. 农业工程学报, 2016, 32(23): 290-296.

【13】Antonucci F, Pallottino F, Paglia G, et al. Non-destructive estimation of mandarin maturity status through portable VIS-NIR spectrophotometer[J]. Food and Bioprocess Technology, 2011, 4(5): 809-813.

【14】Camps C, Christen D. Non-destructive assessment of apricot fruit quality by portable visible-near infrared spectroscopy[J]. LWT-Food Science and Technology, 2009, 42(6): 1125-1131.

【15】Fan Shuxiang, Huang Wenqian, Zhang Baohua, et al. Design and experiment on portable apple soluble solids content spectrometer[J]. Infrared and Laser Engineering, 2014, 43(s1): 219-224.
樊书祥, 黄文倩, 张保华, 等. 便携式苹果糖度光谱检测仪的设计与试验[J]. 红外与激光工程, 2014, 43(s1): 219-224.

【16】Wei Wensong, Peng Yankun. Development of hand-held device for nondestructive detection of meat quality parameters[J]. Transactions of the Chinese Society of Agricultural Machinery, 2016, 47(s1): 324-332.
魏文松, 彭彦昆. 手持式生鲜肉品质参数无损检测装置设计[J]. 农业机械学报, 2016, 47(s1): 324-332.

【17】Zheng X C, Peng Y K, Wang W X. A nondestructive real-time detection method of total viable count in pork by hyperspectral imaging technique[J]. Applied Science, 2017, 7(3): 7030213.

【18】Liu Shanmei. Research on cold fresh pork non-destructive detection methods based on hyperspectral imaging technology[D]. Wuhan: Huazhong Agricultural University, 2015: 48-50.
刘善梅. 基于高光谱成像技术的冷鲜猪肉品质无损检测方法研究[D]. 武汉: 华中农业大学, 2015: 48-50.

【19】Zhou Yuanjiao. A new regression method: screening stepwise regression[D]. Yangzhou: Yangzhou University, 2011: 16-19.
周元娇. 筛选逐步回归方法的改进研究[D]. 扬州: 扬州大学, 2011: 16-19.

【20】Wu Yiquan, Zhou Yang, Long Yunlin. Small target detection in hyperspectral remote sensing image based on adaptive parameter SVM[J]. Acta Optica Sinica, 2015, 35(9): 0928001.
吴一全, 周杨, 龙云淋. 基于自适应参数支持向量机的高光谱遥感图像小目标检测[J]. 光学学报, 2015, 35(9): 0928001.

【21】Sun Tong, Wu Yiqing, Li Xiaozhen, et al. Discrimination of camellia oil adulteration by NIR spectra and subwindow permutation analysis[J]. Acta Optica Sinica, 2015, 35(6): 0630005.
孙通, 吴宜青, 李晓珍, 等. 基于近红外光谱和子窗口重排分析的山茶油掺假检测[J]. 光学学报, 2015, 35(6): 0630005.

【22】Liao Yitao, Fan Yuxia, Cheng Fang, et al. Application of successive projections algorithm to nondestructive determination of pork pH value[J]. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(s1): 379-383.
廖宜涛, 樊玉霞, 成芳, 等. 连续投影算法在猪肉pH值无损检测中的应用[J]. 农业工程学报, 2010, 26(s1): 379-383.

【23】Zheng Yongmei, Zhang Jun, Chen Xingdan, et al. Research on model and wavelength selection of near infrared spectral information[J]. Spectroscopy and Spectral Analysis, 2004, 24(6): 675-678.
郑咏梅, 张军, 陈星旦, 等. 基于逐步回归法的近红外光谱信息提取及模型的研究[J]. 光谱学与光谱分析, 2004, 24(6): 675-678.

【24】赵杰文, 林颢. 食品、农产品检测中的数据处理和分析方法[M]. 北京: 科学出版社, 2012: 224-226.

【25】Peng Yankun. Nondestructive optical technology for agro-food quality and safety assessment[M]. Beijing: Science Press, 2016: 29-32.
彭彦昆. 农畜产品品质安全光学无损快速检测技术[M]. 北京: 科学出版社, 2016: 29-32.

【26】Wu J H, Peng Y K, Li Y Y, et al. Prediction of beef quality attributes using VIS/NIR hyperspectral scattering imaging technique[J]. Journal of Food Engineering, 2012, 109(2): 267-273.

【27】Sivertsen A H, Heia K, Stormo S K, et al. Automatic nematode detection in cod fillets (Gadus morhua) by transillumination hyperspectral imaging[J]. Food Science, 2011, 76(1): S77-S83.

【28】Cheng J H, Sun D W, Pu H B, et al. Suitability of hyperspectral imaging for rapid evaluation of thiobarbituric acid (TBA) value in grass carp (Ctenopharyngodon idella) fillet[J]. Food Chemistry, 2015, 171: 258-265.

【29】Cheng J H, Sun D W, Qu J H, et al. Developing a multispectral imaging for simultaneous prediction of freshness indicators during chemical spoilage of grass carp fish fillet[J]. Journal of Food Engineering, 2016, 182: 9-17.

引用该论文

Wei Wensong,Peng Yankun,Zheng Xiaochun,Wang Wenxiu,Tian Fang. Rapid Determination of Content of Total Volatile Basic Nitrogen in Pork Based on Multispectral Detection System with Optimal Wavelength[J]. Acta Optica Sinica, 2017, 37(11): 1130003

魏文松,彭彦昆,郑晓春,王文秀,田 芳. 基于优选波长的多光谱检测系统快速检测猪肉中挥发性盐基氮的含量[J]. 光学学报, 2017, 37(11): 1130003

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF