首页 > 论文 > 光学学报 > 37卷 > 11期(pp:1110004--1)

基于多尺度方向引导滤波和卷积稀疏表示的红外与可见光图像融合

Fusion of Infrared and Visible Images Based on Multi-Scale Directional Guided Filter and Convolutional Sparse Representation

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

基于引导滤波和非下采样方向滤波器,提出了一种多尺度方向引导滤波图像融合方法,该方法兼具边缘保持特性和方向信息提取能力,能够有效提取源图像的有用信息。所提方法对源图像进行多尺度方向引导滤波,得到了包含低频近似部分和强边缘部分的低频分量,而后通过高斯低通滤波将其进行有效分离,分别应用基于卷积稀疏表示和区域能量自适应加权平均的融合规则;对高频细节方向分量应用显著性与引导滤波相结合的融合规则,以保持空间一致性,得到了相应的高频细节融合分量。结果表明,所提方法能更好地提取源图像的目标特征信息,保留丰富的背景信息,客观评价指标优于现有方法,融合结果具有更好的主观视觉效果。

Abstract

A new multi-scale directional guided filter image fusion method based on guided filter and nonsubsampled directional filter bank is proposed. The proposed method possesses the feature of edge preserving and extracting ability of directional information, and can capture the useful information from the source images more effectively. The low-frequency subbands, which are obtained by the multi-scale directional guided filter, include the low-frequency approximation components and strong edge components. These components are separated by Gaussian filter. The low-frequency approximation components and strong edge components are fused based on convolutional sparse representation and adaptive regional energy, respectively. The detail directional subbands are fused via a strategy combined saliency and guided filter to preserve the spatial consistency. Experimental results demonstrate that the proposed method could effectively extract the target feature information and preserve the background information of the source images. The fused results have better subjective visual effect and objective evaluation criteria.

投稿润色
补充资料

中图分类号:TP391

DOI:10.3788/aos201737.1110004

所属栏目:图像处理

基金项目:总装人才战略工程专项资助基金(ZZ[2013]714号)

收稿日期:2017-07-17

修改稿日期:2017-08-04

网络出版日期:--

作者单位    点击查看

刘先红:军械工程学院军械技术研究所, 河北 石家庄 050003
陈志斌:军械工程学院军械技术研究所, 河北 石家庄 050003

联系人作者:陈志斌(shangxinboy@163.com)

备注:刘先红(1977-),男,博士研究生,主要从事图像融合方面的研究。

【1】Cai Zhishan, Chen Musheng. Study on multi-focus image fusion method based on wavelet transform[J]. Laser & Optoelectronics Progress, 2015, 52(9): 091003.
蔡植善, 陈木生. 基于小波变换的多聚焦图像融合方法研究[J]. 激光与光电子学进展, 2015, 52(9): 091003.

【2】Zhao J, Zhou Q, Chen Y, et al. Fusion of visible and infrared images using saliency analysis and detail preserving based image decomposition[J]. Infrared Physics & Technology, 2013, 56: 93-99.

【3】Zhao J, Feng H, Xu Z, et al. Detail enhanced multi-source fusion using visual weight map extraction based on multi scale edge preserving decomposition[J]. Optics Communications, 2013, 287: 45-52.

【4】Hu J, Li S. The multiscale directional bilateral filter and its application to multisensor image fusion[J]. Information Fusion, 2012, 13(3): 196-206.

【5】Li S, Kang X, Hu J. Image fusion with guided filtering[J]. IEEE Transactions on Image Processing, 2013, 22(7): 2864-2875.

【6】Yang Hang, Wu Xiaotian, He Baigen, et al. Image fusion based on multiscale guided filters[J]. Journal of Optoelectronics·Laser, 2015, 26(1): 170-176.
杨航, 吴笑天, 贺柏根, 等. 基于多尺度导引滤波的图像融合方法[J]. 光电子·激光, 2015, 26(1): 170-176.

【7】Rexiline D N D, Anusmina D J. Fusion and restoration of multifocus image using sparse representation[C]. IEEE International Conference on Advances in Engineering, Science and Management, 2012: 12818520.

【8】Liu Y, Wang Z. A practical pan-sharpening method with wavelet transform and sparse representation[C]. IEEE International Conference on Imaging Systems and Techniques, 2013: 14078440.

【9】Liu Y, Liu S, Wang Z. A general framework for image fusion based on multi-scale transform and sparse representation[J]. Information Fusion, 2015, 24: 147-164.

【10】Elad M, Yavneh I. A plurality of sparse representations is better than the sparsest one alone[J]. IEEE Transactions on Information Theory, 2009, 55(10): 4701-4714.

【11】He K, Sun J, Tang X. Guided image filtering[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(6): 1397-1409.

【12】Wohlberg B. Efficient algorithms for convolutional sparse representations[J]. IEEE Transactions on Image Processing, 2016, 25(1): 301-315.

【13】da Cunha A L, Zhou J, Do M N. The nonsubsampled contourlet transform: theory, design, and applications[J]. IEEE Transactions on Image Processing, 2006, 15(10): 3089-3101.

【14】Li Junfeng, Li Qishen, Zhang Yong, et al. The non-subsampled directional filter bank and its application in remote sensing image fusion[J]. Journal of Image and Graphics, 2009, 14(10): 2047-2053.
李俊峰, 李其申, 张永, 等. 非下采样方向滤波器组在遥感图像融合中的应用[J]. 中国图象图形学报, 2009, 14(10): 2047-2053.

【15】Achanta R, Hemami S, Estrada F, et al. Frequency-tuned salient region detection[C]. IEEE Conference on Computer Vision and Pattern Recognition, 2009: 10835795.

【16】Qu X B, Yan J W, Xiao H Z, et al. Image fusion algorithm based on spatial frequency-motivated pulse coupled neural networks in nonsubsampled contourlet transform domain[J]. Acta Automatica Sinica, 2008, 34(12): 1508-1514.

【17】Burt P J, Kolczynski R J. Enhanced image capture through fusion[C]. IEEE Fourth International Conference on Computer Vision, 1993: 4903431.

【18】Miao Q G, Shi C, Xu P F, et al. A novel algorithm of image fusion using shearlets[J]. Optics Communications, 2011, 284(6): 1540-1547.

【19】Xydeas C S, Petrovic' V. Objective image fusion performance measure[J]. Electronics Letters, 2000, 36(4): 308-309.

引用该论文

Liu Xianhong,Chen Zhibin. Fusion of Infrared and Visible Images Based on Multi-Scale Directional Guided Filter and Convolutional Sparse Representation[J]. Acta Optica Sinica, 2017, 37(11): 1110004

刘先红,陈志斌. 基于多尺度方向引导滤波和卷积稀疏表示的红外与可见光图像融合[J]. 光学学报, 2017, 37(11): 1110004

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF