首页 > 论文 > 光学技术 > 43卷 > 5期(pp:405-409)

彩虹自标定方法对混合喷雾比例的原位测量

Experimental research of spray component concentrations by multi- rainbow spectral-situ measurement with self-calibration method

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

传统彩虹测量技术标定复杂、精度可重复性差且难以适应密闭空间。一种基于多彩虹谱线自标定方法, 可省去原有的标定系统装置, 将标定过程内化于对彩虹信号的处理, 以水为例的测量偏差仅为0.13%。将该技术应用于混合喷雾液滴组分浓度测量中, 探究并优化了参与混合的两种液体组分的方案。实验采用60%乙醇-水混合喷雾, 原位测量了混合喷雾场多点组分浓度, 测量结果差别可以控制在0.5%以内, 表明该方法技术在相关领域的应用潜力。

Abstract

Calibration of the traditional rainbow measuring technique has the following disadvantages, complex equipment, precision reliance on manual operation, poor reproducibility and difficult to adapt to the measurement needs of confined space. A self-calibration method based on multi rainbow spectrum is proposed, eliminating any original rainbow measuring technology calibrate system device. The calibration process is put into the process of rainbow signal processing. With the measurement, it only needs to be processed with spray signal itself. And deviation of water measurement is just 0.13%. The technology is used in global rainbow technology to measure mix component concentrations in the spray droplets. Factors affecting the issues are explored and the program of two liquid components which involved is optimized. 60% ethanol-water mixture spray is used in the experiments, and the concentration of mixed multi-component spray is measured in situ measurements. Comparing with the traditional method, the difference in the measurement results can be controlled within 0.5%. Moreover, self-calibration method has better maneuverability in situ measurements. Application of this method shows the potential in related fields.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN249

所属栏目:光学测量

基金项目:国家自然科学基金资助项目(51576177)

收稿日期:2016-08-30

修改稿日期:2016-11-15

网络出版日期:--

作者单位    点击查看

操凯霖:浙江大学 热能工程研究所-能源清洁利用国家重点实验室, 杭州 310027
姜淏予:浙江大学 热能工程研究所-能源清洁利用国家重点实验室, 杭州 310027
李灿:浙江大学 热能工程研究所-能源清洁利用国家重点实验室, 杭州 310027
吴学成:浙江大学 热能工程研究所-能源清洁利用国家重点实验室, 杭州 310027
陈玲红:浙江大学 热能工程研究所-能源清洁利用国家重点实验室, 杭州 310027
邱坤赞:浙江大学 热能工程研究所-能源清洁利用国家重点实验室, 杭州 310027
岑可法:浙江大学 热能工程研究所-能源清洁利用国家重点实验室, 杭州 310027

联系人作者:操凯霖(benxn@zju.edu.cn)

备注:操凯霖(1991-), 男, 硕士研究生, 从事彩虹散射测量技术研究。

【1】苏铁, 陈爽, 杨富荣,等. 双色平面激光诱导荧光瞬态燃烧场测温实验[J]. 红外与激光工程, 2014, 43(6):1750-1754.
SU Tie, CHEN Shuang, YANG Furong, et al. Investigation of temperature of transient combustion using two-line PLIF[J]. Infrared and Laser Engineering, 2014, 43(6):1750-1754.

【2】袁博宇, 李威, 罗成名. 溶液浓度变化实时检测系统的设计[J]. 光学精密工程, 2014, 22(1):18-23.
YUAN Boyu, LI Wei, LUO Chengming. Desigh of real-time measurement system for solution concentration changes[J]. Optics and Precision Engineering, 2014, 22(1):18-23.

【3】QI P, YUE B, ZHANG Z. Spray droplet characterization measurements using global rainbow refractometry and microscope analysis[C]∥Joint International Mechanical, Electronic and Information Technology Conference. China,Chongqing, 2015.

【4】SAENGKAEW S, CHARINPANIKUL T, LAURENT C, et al. Processing of individual rainbow signals[J]. Experiments in Fluids, 2010, 48(1):111-119.

【5】LEMAITRE P, PORCHERON E, GREHAN G, et al. Development of a global rainbow refractometry technique to measure the temperature of spray droplets in a large containment vessel[J]. J. Phys. Sci, 2006, 15(2):17-26.

【6】OUBOUKHLIK M, SAENGKAEW S, FOURNIER-SALAN M C, et al. Local measurement of mass transfer in a reactive spray for CO2, capture[J]. Canadian Journal of Chemical Engineering, 2015, 93(2):419-426.

【7】CHIEWUDOMRAT S, OUBOUKHLIK M, ESTEL L, et al. Application of global rainbow technique for measurement of refractive index gradients inside droplets during CO2 capture[C]∥Ecce. 2015.

【8】SONG F, YAO Z, XU C, et al. Reversion scheme for droplet parameters with rainbow refractometry based on debye theory[C]∥3rd Micro and Nano Flows Conference. Brunel University,2014.

【9】SONG F, YANG P, XU C, et al. An improved global rainbow refractometry for spray droplets characterization based on five-point method and optimization process[J]. Flow Measurement & Instrumentation, 2014, 40:223-231.

【10】SONG F, XU C, WANG S, et al. Measurement of temperature gradient in a heated liquid cylinder using rainbow refractometry assisted with infrared thermometry[J]. Optics Communications, 2016, 380:179-185.

【11】WANG J, GRE'HAN G, HAN Y, et al. Numerical study of global rainbow technique: Sensitivity to non-sphericity of droplets[J]. Experiments in Fluids, 2011, 51(1):149-159.

【12】SAENGKAEW S. Study of spray heat up: on the development of global rainbow techniques[D]. Rouen, 2005.

【13】吴迎春, 吴学成, Sawitree Saengkaew,等. 全场彩虹技术测量喷雾浓度及粒径分布[J]. 物理学报, 2013, (9):90703-090703.
WU Yingchun, WU Xuecheng, SAWITREE S, et al. Concentration and size measurements of sprays with global rainbow technique[J]. Acta phys Sinica, 2013,(9):90703-090703.

【14】SAENGKAEW S, CHARINPANITKUL T, VANISRI H, et al. Rainbow refractrometry: On the validity domain of Airy’s and Nussenzveig’s theories[J]. Optics Communications, 2006, 259(1):7-13.

【15】RIOBO'O R J J, PHILIPP M, RAMOS M A, et al. Concentration and temperature dependence of the refractive index of ethanol-water mixtures: Influence of intermolecular interactions[J]. European Physical Journal E, 2009, 30(1):19-26.光 学 技 术 第43卷第5期金仁贵, 等: 等离子体金属波导在外磁场调制下的传输模式第43卷 第5期2017年9月 光学技术OPTICAL TECHNIQUE Vol.43 No.5Sep. 2017

引用该论文

CAO Kailin,JIANG Haoyu,LI Can,WU Xuecheng,CHEN Linghong,QIU Kunzan,CEN Kefa. Experimental research of spray component concentrations by multi- rainbow spectral-situ measurement with self-calibration method[J]. Optical Technique, 2017, 43(5): 405-409

操凯霖,姜淏予,李灿,吴学成,陈玲红,邱坤赞,岑可法. 彩虹自标定方法对混合喷雾比例的原位测量[J]. 光学技术, 2017, 43(5): 405-409

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF