首页 > 论文 > 激光与光电子学进展 > 54卷 > 11期(pp:111003--1)

基于多尺度分解和显著性区域提取的可见光红外图像融合方法

Fusion Method of Visible and Infrared Images Based on Multi-Scale Decomposition and Saliency Region Extraction

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

可见光红外图像融合技术对于提升成像区域的信息丰富程度具有重要意义。提出了一种基于多尺度分解和显著性区域提取的可见光红外图像融合算法。利用边缘保持的图像平滑算法,构建了多尺度图像分解框架,将图像分解为不同尺度的基础层图像和若干细节层图像,同时结合导向滤波器,在每个分解图层实施显著性区域提取。通过加权重建进行融合信息的视觉增强,得到最终的融合结果。针对不同融合算法和图像库开展了主客观评价对比实验,结果表明:所提出的算法具有较好的主客观评价结果,算法融合效果表现优异,适用性较好。

Abstract

The fusion technique of visible and infrared images has important significance in enhancing the information richness of the imaging areas. A fusion algorithm of visible and infrared images based on the multi-scale decomposition and saliency region extraction is proposed. The edge-preserved image smoothing algorithm is introduced to build the framework of multi-scale image decomposition. The source image is decomposed into base layer image and several detail layer images with different decomposition scales. Meanwhile, the saliency region maps are extracted in each decomposition layer combined with the guided filter. The final fusion image is obtained by the reconstruction of each decomposition layer with different weighting factor values in order to enhance the visual effect of the fusion information. The contrast experiments of objective and subjective evaluation are developed on different fusion algorithms and databases. The experimental results illustrate that the proposed algorithm has a superior objective and subjective evaluation performance on the fusion results. The fusion effect of algorithm is excellent and the applicability is good.

投稿润色
补充资料

中图分类号:TP391;O438

DOI:10.3788/lop54.111003

所属栏目:图像处理

基金项目:国家自然科学基金(61405052)、全国高校光电专业第三批教育教学热点难点教研项目(GDZYJYXM2015025)

收稿日期:2017-04-24

修改稿日期:2017-06-12

网络出版日期:--

作者单位    点击查看

许 磊:杭州电子科技大学电子信息学院, 浙江 杭州 310018
崔光茫:杭州电子科技大学电子信息学院, 浙江 杭州 310018
郑晨浦:杭州电子科技大学电子信息学院, 浙江 杭州 310018
赵巨峰:杭州电子科技大学电子信息学院, 浙江 杭州 310018

联系人作者:崔光茫(cuigm@hdu.edu.cn)

备注:许 磊(1996-),男,本科生,主要从事图像处理方面的研究。

【1】Xydeas C S, Petrovic V. Objective image fusion performance measure[J]. Electronics Letters, 2000, 36(4): 308-309.

【2】Qu G H, Zhang D,Yan P F. Medical image fusion by wavelet transform modulus maxima[J]. Optics Express, 2001, 9(4): 184-190.

【3】Nencini F, Garzelli A, Baronti S, et al. Remote sensing image fusion using the curvelet transform[J]. Information Fusion, 2007, 8(2): 143-156.

【4】Guo B L, Zhang Q, Hou Y. Region-based fusion of infrared and visible images using nonsubsampled contourlet transform[J]. Chinese Optics Letters, 2008, 6(5): 338-341.

【5】Bulanon D M, Burks T F, Alchanatis V. Image fusion of visible and thermal images for fruit detection[J]. Biosystems Engineering, 2009, 103(1): 12-22.

【6】Matsopoulos G K, Marshall S. Application of morphological pyramids: fusion of MR and CT phantoms[J]. Journal of Visual Communication & Image Representation, 1995, 6(2): 196-207.

【7】Piella G. A general framework for multiresolution image fusion: from pixels to regions[J]. Information Fusion, 2003, 4(4): 259-280.

【8】Gonzalez-Audicana M, Saleta J L, Catalan R G, et al. Fusion of multispectral and panchromatic images using improved IHS and PCA mergers based on wavelet decomposition[J]. IEEE Transactions on Geoscience & Remote Sensing, 2004, 42(6): 1291-1299.

【9】Kong W W, Zhang L J, Lei Y. Novel fusion method for visible light and infrared images based on NSST-SF-PCNN[J]. Infrared Physics & Technology, 2014, 65(7): 103-112.

【10】Ding M, Wei L, Wang B. Research on fusion method for infrared and visible images via compressive sensing[J]. Infrared Physics & Technology, 2013, 57: 56-67.

【11】Wang R, Du L. Infrared and visible image fusion based on random projection and sparse representation[J]. International Journal of Remote Sensing, 2014, 35(5): 1640-1652.

【12】Li Ruichang, Zou Gangyi, Wang Chenchen, et al. Optical design of visible and infrared integrative camera[J]. Acta Optica Sinica, 2016, 36(5): 0522002.
李瑞昌, 邹刚毅, 王臣臣, 等. 可见光与红外一体化光学系统设计[J]. 光学学报, 2016, 36(5): 0522002.

【13】Wang Xin, Ji Tongbo, Liu Fu. Fusion of infrared and visible images based on target segmentation and compressed sensing[J]. Optics and Precision Engineering, 2016, 24(7): 1743-1753.
王昕, 吉桐伯, 刘富. 结合目标提取和压缩感知的红外与可见光图像融合[J]. 光学 精密工程, 2016, 24(7): 1743-1753.

【14】Zhou Yuren, Geng Aihui, Wang Ying, et al. Contrast enhanced fusion of infrared and visible images[J]. Chinese J Lasers, 2014, 41(9): 0909001.
周渝人, 耿爱辉, 王莹, 等. 基于对比度增强的红外与可见光图像融合[J]. 中国激光, 2014, 41(9): 0909001.

【15】Bai X Z, Chen X W, Zhou F G, et al. Multiscale top-hat selection transform based infrared and visual image fusion with emphasis on extracting regions of interest[J]. Infrared Physics & Technology, 2013, 60: 81-93.

【16】Chen Lei, Yang Fengbao, Wang Zhishe, et al. Research on fusion algorithm of infrared and visible imagery based on variational enhanced model[J]. Laser & Optoelectronics Progress, 2014, 51(4): 041003.
陈磊, 杨风暴, 王志社, 等. 红外与可见光图像的变分增强融合算法研究[J]. 激光与光电子学进展, 2014, 51(4): 041003.

【17】Wang Yumei, Chen Daimei, Zhao Genbao. Image fusion algorithm of infrared and visible images based on target extraction and Laplace transformation[J]. Laser & Optoelectronics Progress, 2017, 54(1): 011002.
汪玉美, 陈代梅, 赵根保. 基于目标提取与拉普拉斯变换的红外和可见光图像融合算法[J]. 激光与光电子学进展, 2017, 54(1): 011002.

【18】Zhang Qiang, Guo Baolong. Infrared and color visible images fusion based on color transfer and information entropy[J]. Acta Optica Sinica, 2011, 31(s1): s100418.
张强, 郭宝龙. 基于彩色传递和信息熵的红外与彩色可见光图像融合[J]. 光学学报, 2011, 31(s1): s100418.

【19】Chen Musheng, Cai Zhishan. Study on fusion of visual and infrared images based on NSCT[J]. Laser & Optoelectronics Progress, 2015, 52(6): 061002.
陈木生, 蔡植善. 基于NSCT的红外与可见光图像融合方法研究[J]. 激光与光电子学进展, 2015, 52(6): 061002.

【20】Hong R C, Wang C, Wang M, et al. Salience preserving multifocus image fusion with dynamic range compression[J]. International Journal of Innovative Computing Information and Control, 2009, 5(8): 2369-2380.

【21】Zhao J F, Feng H J, Xu Z H, et al. Detail enhanced multi-source fusion using visual weight map extraction based on multi scale edge preserving decomposition[J]. Optics Communications, 2013, 287: 45-52.

【22】Cui G M, Feng H J, Xu Z H, et al. Detail preserved fusion of visible and infrared images using regional saliency extraction and multi-scale image decomposition[J]. Optics Communications, 2015, 341: 199-209.

【23】Li Meng, Hua Weiping, Zhao Jufeng. Dual-band image fusion using visual attention extraction with multiple windows[J]. Laser & Optoelectronics Progress, 2015, 52(12): 121002.
李梦, 华玮平, 赵巨峰. 使用多尺度视觉注意提取的双波段图像融合[J]. 激光与光电子学进展, 2015, 52(12): 121002.

【24】Shen C T, Chang F J, Hung Y P, et al. Edge-preserving image decomposition using L1 fidelity with L0 gradient[C]. SIGGRAPH Asia 2012 Technical Briefs, 2012: 1-4.

【25】Li S T, Kang X D, Hu J W. Image fusion with guided filtering[J]. IEEE Transactions on Image Processing, 2013, 22(7): 2864-2875.

【26】Roberts J W, Aardt J A V, Ahmed F B. Assessment of image fusion procedures using entropy, image quality, and multispectral classification[J]. Journal of Applied Remote Sensing, 2008, 2(1): 023522.

【27】Jin H Y, Wang Y Y. A fusion method for visible and infrared images based on contrast pyramid with teaching learning based optimization[J]. Infrared Physics & Technology, 2014, 64: 134-142.

【28】Eskicioglu A M, Fisher P S. Image quality measures and their performance[J]. IEEE Transactions on Communications, 1996, 43(12): 2959-2965.

引用该论文

Xu Lei,Cui Guangmang,Zheng Chenpu,Zhao Jufeng. Fusion Method of Visible and Infrared Images Based on Multi-Scale Decomposition and Saliency Region Extraction[J]. Laser & Optoelectronics Progress, 2017, 54(11): 111003

许 磊,崔光茫,郑晨浦,赵巨峰. 基于多尺度分解和显著性区域提取的可见光红外图像融合方法[J]. 激光与光电子学进展, 2017, 54(11): 111003

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF