首页 > 论文 > 激光与光电子学进展 > 54卷 > 11期(pp:110101--1)

基于动态区域提取的模式复原算法

Modal Reconstruction Algorithm Based on Dynamic Region Extraction

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

追踪了由远场光电探测器采样宽度限制引入的量化噪声在算法实现过程中的传递,分析了其对算法在波前像差校正中的效果和收敛速度产生影响的原因。根据斯特列尔比值(SR)的变化,提出了一种基于动态区域提取的模式复原算法,并利用18阶和33阶Zernike多项式模拟得到的符合Kolmogrove大气湍流功率谱的波前对该算法进行数值计算。计算结果表明:采用动态区域提取的复原算法校正波前像差,在12位相机采样宽度和33阶初始像差情况下,算法经31次迭代后收敛,波前复原残差均方根为0.058λ(λ为波长),SR达0.9以上。该算法减小了量化噪声的影响,无波前传感自适应光学系统的收敛速度和校正效果得到显著提高。

Abstract

Transferring of quantization noise in algorithm implementation is tracked, which is caused by the finite sampling width of far field photodetector. The effect of quantization noise on wavefront aberration correction effect and convergence speed is analyzed. According to the changing of Strehl ratio (SR), a modal reconstruction algorithm based on dynamic region extraction is presented. Numerical calculations are carried out with the wavefront which fits the Kolmogrove atmospheric turbulence power spectrum and is obtained by the simulation of 18- and 33-order Zernike terms. The results show that, under the condition of the camera sampling width of 12 bits and 33-order initial aberration, the SR is larger than 0.9, the root-mean-square value of wavefront recuperative residual is 0.058λ (λ is wavelength), and the algorithm is converged after iteration for 31 times. The proposed algorithm greatly improves the correction performance and convergence speed of the wavefront sensorless adaptive optics system and reduces the effect of the quantization noise.

投稿润色
补充资料

中图分类号:TP273.2

DOI:10.3788/lop54.110101

所属栏目:大气光学与海洋光学

基金项目:国家自然科学基金(60978049)、中国科学院创新基金(CXJJ-16M208)、中国科学院青年创新促进会项目(2012280)、中国科学院卓越青年科学家项目

收稿日期:2017-04-26

修改稿日期:2017-05-24

网络出版日期:--

作者单位    点击查看

文良华:中国科学院自适应光学重点实验室, 四川 成都 610209中国科学院光电技术研究所, 四川 成都 610209中国科学院大学, 北京 100049宜宾学院物理与电子工程学院, 四川 宜宾 644007
杨 平:中国科学院自适应光学重点实验室, 四川 成都 610209中国科学院光电技术研究所, 四川 成都 610209
王 帅:中国科学院自适应光学重点实验室, 四川 成都 610209中国科学院光电技术研究所, 四川 成都 610209
陈善球:中国科学院自适应光学重点实验室, 四川 成都 610209中国科学院光电技术研究所, 四川 成都 610209
刘文劲:中国科学院自适应光学重点实验室, 四川 成都 610209中国科学院光电技术研究所, 四川 成都 610209
许 冰:中国科学院自适应光学重点实验室, 四川 成都 610209中国科学院光电技术研究所, 四川 成都 610209

联系人作者:杨平(pingyang2516@163.com)

备注:文良华(1980-),男,博士研究生,主要从事自适应光学控制与信号处理方面的研究。

【1】Jiang Wenhan, Yang Zeping, Guan Chunlin, et al. New progress on adaptive optics in inertial confinement fusion facility[J]. Chinese J Lasers, 2009, 36(7): 1625-1634.
姜文汉, 杨泽平, 官春林, 等. 自适应光学技术在惯性约束聚变领域应用的新进展[J]. 中国激光, 2009, 36(7): 1625-1634.

【2】Sherman L, Ye J Y, Albert O, et al. Adaptive correction of depth-induced aberrations in multiphoton scanning microscopy using a deformable mirror[J]. Journal of Microscopy, 2002, 206(1): 65-71.

【3】Ling Ning, Zhang Yudong, Rao Xuejun, et al. A small adaptive optical imaging system for cells of living human retina[J]. Acta Optica Sinica, 2004, 24(9): 1153-1158.
凌宁, 张雨东, 饶学军, 等. 用于活体人眼视网膜观察的自适应光学成像系统[J]. 光学学报, 2004, 24(9): 1153-1158.

【4】Wulff K D, Cole G D, Clark R L. Holographic optical tweezers aberration correction using adaptive optics without a wavefront sensor[C]. SPIE, 2006, 6236: 63262Y.

【5】Li Z K, Cao J T, Liu W, et al. Comparison of swarm intelligence algorithms in atmospheric compensation for free space optical communication[C]. SPIE, 2015, 9521: 952114.

【6】Albert O, Sherman L, Mourou G, et al. Smart microscope: An adaptive optics learning system for aberration correction in multiphoton confocal microscopy[J]. Optics Letters, 2000, 25(1): 52-54.

【7】Zhang Y D, Ling N, Yang Z P, et al. An adaptive optical system for ICF application[C]. SPIE, 2002, 4494: 96-103.

【8】Vorontsov M A, Carhart G W, Ricklin J C. Adaptive phase-distortion correction based on parallel gradient-descent optimization[J]. Optics Letters, 1997, 22(12): 907-909.

【9】Vorontsov M A, Sivokon V P. Stochastic parallel-gradient-descent technique for high-resolution wave-front phase-distortion correction[J]. Journal of the Optical Society of America A, 1998, 15(10): 2745-2758.

【10】Booth M J. Wavefront sensorless adaptive optics for large aberrations[J]. Optics Letters, 2007, 32(1): 5-7.

【11】Booth M J. Wave front sensor-less adaptive optics: A model-based approach using sphere packings[J]. Optics Express, 2006, 14(4): 1339-1352.

【12】Huang L H, Rao C H. Wavefront sensorless adaptive optics: A general model-based approach[J]. Optics Express, 2011, 19(1): 371-379.

【13】Yang H Z, Zhang Z, Wu J. Performance comparison of wavefront-sensorless adaptive optics systems by using of the focal plane[J]. International Journal of Optics, 2015, 2015: 985351.

【14】Yang H Z, Soloviev O, Verhaegen M. Model-based wavefront sensorless adaptive optics system for large aberrations and extended objects[J]. Optics Express, 2015, 23(19): 24587-24601.

【15】Huang L H. Coherent beam combination using a general model-based method[J]. Chinese Physics Letters, 2014, 31(9): 094205.

【16】Qian Feng. Research on the high precision ATP system in satellite-to-earth quantum communications[D]. Beijing: University of Chinese Academy of Sciences, 2014: 57-100.
钱锋. 星地量子通信高精度ATP系统研究[D]. 北京: 中国科学院大学, 2014: 57-100.

【17】Noll R J. Zernike polynomials and atmospheric turbulence[J]. Journal of the Optical Society of America, 1976, 66(3): 207-211.

引用该论文

Wen Lianghua,Yang Ping,Wang Shuai,Chen Shanqiu,Liu Wenjin,Xu Bing. Modal Reconstruction Algorithm Based on Dynamic Region Extraction[J]. Laser & Optoelectronics Progress, 2017, 54(11): 110101

文良华,杨 平,王 帅,陈善球,刘文劲,许 冰. 基于动态区域提取的模式复原算法[J]. 激光与光电子学进展, 2017, 54(11): 110101

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF