首页 > 论文 > 半导体光电 > 38卷 > 5期(pp:633-638)

BOTDA传感系统的布里渊频移提取方法研究进展

Research on Brillouin Frequency Shift Extraction Method of BOTDA Sensing System

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

随着布里渊光时域分析(BOTDA)传感技术在许多大型基础工程设施安全监测中的广泛应用,对测量精度和实时性的要求日益提高。采用传统的最小二乘曲线拟合方式对布里渊散射谱进行布里渊频移提取,其测量结果的精度依赖于参数初始值的选取和噪声的影响,并且拟合算法的参数迭代求解过程增加了数据处理的时间,降低了工程实时性。文章综述了多种非线性参数优化估计的曲线拟合算法和基于神经网络的布里渊散射谱特征提取的混合优化算法,介绍了无需经过曲线拟合的互相关法(XCM)、深度学习法(DL)和亚像素级精度的重心提取算法(CDA),这些算法能适应更大的扫频步长,实时性更好。

Abstract

With wide applications of Brillouin optical fiber time domain analysis (BOTDA) sensing technology in safety monitoring of many large-scale infrastructure projects, much more stricter requirements are put on measurement accuracy and real-time. If the Brillouin frequency shift is extracted with the traditional least squares curve fitting, the accuracy of the measurement results depends mainly on the selection of the initial value and the influence of noise. And the iterative solution process of fitting algorithm increases the data processing time, which is not conducive to engineering real-time. In this paper, for estimating the central frequency of noisy Lorentzian curves acquired from the measurements with BOTDA sensors, it is summarized the curve fitting algorithms based on optimal estimation of nonlinear parameters and the hybrid fitting algorithms based on the neural network for feature extraction of Brillouin scattering spectrum. In addition, the cross correlation method(XCM), deep-learning(DL) method and the centroid detection algorithm(CDA) are introduced.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN253

DOI:10.16818/j.issn1001-5868.2017.05.002

所属栏目:动态综述

基金项目:国家自然科学基金项目(61377088);河北省自然科学基金项目(F2014502098).

收稿日期:2017-05-08

修改稿日期:--

网络出版日期:--

作者单位    点击查看

尚秋峰:华北电力大学 电子与通信工程系,河北 保定 071003
胡雨婷:华北电力大学 电子与通信工程系,河北 保定 071003
刘薇:华北电力大学 电子与通信工程系,河北 保定 071003

【1】Van Deventer M O, Boot A J. Polarization properties of stimulated Brillouin scattering in single-mode fibers[J]. J. of Lightwave Technol., 1994, 12(4): 585-590.

【2】Wang F, Zhan W W, Lu Y G, et al. Determining the change of Brillouin frequency shift by using the similarity matching method[J]. J. of Lightwave Technol., 2015, 33(19): 4101-4108.

【3】Koyamada Y, Sato S, Nakamura S, et al. Simulating and designing Brillouin gain spectrum in single-mode fibers[J]. J. of Lightwave Technol., 2004, 22(2): 631-639.

【4】Bernini R, Minardo A, Zeni L. Dynamic strain measurement in optical fibers by stimulated Brillouin scattering[J]. Opt. Lett., 2009, 34(17): 2613-2615.

【5】Voskoboinik A, Yilmaz O F, Willner A W, et al. Sweep-free distributed Brillouin time-domain analyzer (SF-BOTDA)[J]. Opt. Express, 2011, 19(26): B842-B847.

【6】Urricelqui J, Zornoza A, Sagues M, et al. Dynamic BOTDA measurements based on Brillouin phase-shift and RF demodulation[J]. Opt. Express, 2012, 20(24): 26942-26949.

【7】Farahani M A, Castillo-Guerra E, Colpitts B G. A detailed evaluation of the correlation-based method used for estimation of the Brillouin frequency shift in BOTDA sensors[J]. IEEE Sensors J., 2013, 13(12): 4589-4598.

【8】Azad A K, Wang L, Guo N, et al. Temperature profile extraction using artificial neural network in BOTDA sensor system[C]// Proc. of Opto-Electron. and Commun. Conf., 2015: 1-3.

【9】Ruiz-Lombera, Mirapeix J, Laarossi I, et al. Brillouin frequency shift estimation in BOTDA via subpixel processing[C]// Proc. of European Workshop on Opt. Fibre Sensors, 2016: 99162L.

【10】Nikles M, Thevenaz L, Robert P A. Brillouin gain spectrum characterization in single-mode optical fibers[J]. J. of Lightwave Technol., 1997, 15(10): 1842-1851.

【11】梁 浩,张旭苹,李新华, 等. 布里渊背向散射光谱数据拟合算法设计与实现[J]. 光子学报, 2009, 38(4): 875-879.
Liang Hao, Zhang Xuping, Li Xinhua, et al. Design and implementation of data fitting algorithm for Brillouin back scattered-light spectrum data[J]. Act. Photon. Sin., 2009, 38(4): 875-879.

【12】Fshar S V, Ferrier G A, Bao X, et al. Impact of EOM extinction ratio on the Brillouin frequency of distributed Brillouin-based fiber-optic sensors[J]. Proc. of SPIE, 2003, 5260: 519-522.

【13】Bernini R, Minardo A, Zeni L. Reconstruction technique for stimulated Brillouin scattering distributed fiber-optic sensors[J]. Opt. Eng., 2002, 41(9): 2186-2194.

【14】肖尚辉, 李 立. 光纤分布式布里渊传感散射谱数据分析模型[J]. 西南交通大学学报, 2009, 44(6): 946-950.
Xiao Shanghui, Li Li. Analytical model of Brillouin scattering spectrum measurements in fibre-optic distributed sensing systems[J]. J. of Southwest Jiaotong University, 2009, 44(6): 946-950.

【15】吕健刚, 韦春桃. 基于BOTDA布里渊背向散射光谱数据的拟合算法[J]. 光学技术, 2015, 41(4): 380-384.
Lv Jiangang, Wei Chuntao. Fitting algorithm for BOTDA Brillouin back scattered-light spectrum data[J]. Opt. Technique, 2015, 41(4): 380-384.

【16】Aoki T, Kawai T, Takei Y. On the exact steepest descent method: a new method for the description of Stokes curves[J]. J. of Math. Phys., 2001, 42(8): 3691-3713.

【17】白向军, 彭国华, 陈 晓. 基于遗传算法和最速下降法的Bézier曲线拟合[J]. 计算机工程与设计, 2009, 30(1): 194-196.
Bai Xiangjun, Peng Guohua, Chen Xiao. Bézier curve fitting based on genetic algorithm and steepest descent algorithm[J]. Computer Eng. and Design, 2009, 30(1): 194-196.

【18】黄茶香. 布里渊散射分布式光纤传感系统的传感信息提取方法研究[D]. 南昌: 南昌航空大学, 2013.
Huang Chaxiang. Research on extraction of sensing information in Brillouin scattering distributed fiber optic sensing system[D]. Nanchang:Nanchang Hangkong University, 2013.

【19】肖尚辉, 李 立. 一种新的光纤布里渊传感散射谱拟合方法[J]. 光学技术, 2009, 35(6): 897-900, 904.
Xiao Shanghui, Li Li. New fitting method for Brillouin-based scattering spectrum of fibre-optic distributed sensing systems[J]. Opt. Technique, 2009, 35(6): 897-900, 904.

【20】张燕君, 张书国, 付广伟, 等. 布里渊散射谱参数提取问题的混合优化算法研究与应用[J]. 光谱学与光谱分析, 2012, 32(4): 915-920.
Zhang Yanjun, Zhang Shuguo, Fu Guangwei,et al. Research on and application of hybrid optimization algorithm in Brillouin scattering spectrum parameter extraction problem[J]. Spectroscopy and Spectral Anal., 2012, 32(4): 915-920.

【21】张有迪, 李嘉琪, 孟钏楠. 布里渊散射谱拟合的混合优化算法[J]. 强激光与粒子束, 2015, 27(9): 87-93.
Zhang Youdi, Li Jiaqi, Meng Xunnan. Hybrid optimization algorithm of Brillouin scattering spectra fitting[J]. High Power Laser and Particle Beams, 2015, 27(9): 87-93.

【22】刘 银, 付广伟, 张燕君, 等. 基于径向基函数神经网络的传感布里渊散射谱特征提取[J]. 光学学报, 2012, 32(2): 69-75.
Liu Yin, Fu Guangwei, Zhang Yanjun, et al. A novel method for Brillouin scattering spectrum of distributed sensing systems based on radial basis function neural networks to extract features[J]. Act. Opt. Sin., 2012, 32(2): 69-75.

【23】刘迪仁, 宋牟平, 章献民, 等. 应变梯度对布里渊光时域反射计测量精度的影响[J]. 光学学报, 2005, 25(4): 501-505.
Liu Diren, Song Muping, Zhang Xianmin, et al. Influence of stress gradient on measurement accuracy of Brillouin optical-time-domain-reflectometry[J]. Act. Opt. Sin., 2005, 25(4): 501-505.

【24】张燕君, 刘文哲, 付兴虎, 等. 基于自适应变异果蝇优化算法和广义回归神经网络的布里渊散射谱特征提取[J]. 光谱学与光谱分析, 2015, 35(10): 2916-2923.
Zhang Yanjun, Liu Wenzhe, Fu Xinghu,et al. A Brillouin scattering spectrum feature extraction based on flies optimization algorithm with adaptive mutation and generalized regression neural network[J]. Spectroscopy and Spectral Anal., 2015, 35(10): 2916-2923.

【25】Newsam G N, Redding N J. Fitting the most probable curve to noisy observations[C]// Proc.of Inter. Conf. on Image Proc., 1997, 2: 752-755.

【26】Yoo J C, Han T H. Fast normalized cross-correlation[J]. Circuits Systems & Signal Proc., 2009, 28(6): 819-843.

【27】Farahani M A, Castillo-Guerra E, Colpitts B G. Accurate estimation of Brillouin frequency shift in Brillouin optical time domain analysis sensors using cross correlation[J]. Opt. Lett., 2011, 36(21): 4275-4277.

【28】Ngia L S H, Sjoberg J, Viberg M. Adaptive neural nets filter using a recursive Levenberg-Marquardt search direction[C]// IEEE Asilomar Conf., 1998, 1: 697-701.

【29】高 航, 薛凌云. 基于改进遗传算法的BP神经网络拟合LED光谱模型[J]. 激光与光电子学进展, 2017(7): 288-296.
Gao Hang, Xue Lingyun. BP neural network based on improved genetic algorithm fitting LED spectral model[J]. Laser & Optoelectron. Progress, 2017(7): 288-296.

【30】张宝堃, 张宝一. 基于BP神经网络的非线性函数拟合[J]. 电脑知识与技术, 2012, 27(9): 6579-6583.
Zhang Baokun, Zhang Baoyi. Nonlinear function approximation based on BP neural network[J]. Computer Knowledge and Technol., 2012, 27(9): 6579-6583.

【31】Soto M A, Ramírez J A, Thévenaz L. Intensifying Brillouin distributed fibre sensors using image processing[C]// Proc. of Inter. Conf. on Opt. Fibre Sensors, 2015.

【32】赵世琦, 庞拂飞, 贺梦婷, 等. 基于灰度图像的光纤相干光时域反射计信号处理研究[J]. 中国激光, 2015, 42(3): 154-159.
Zhao Shiqi, Pang Fufei, He Mengting, et al. Research on the signal processing in optical fiber coherent optical time domain reflectometer based on grey scale image[J]. Chinese J. of Lasers, 2015, 42(3): 154-159.

【33】王 利, 陈念年, 巫 玲, 等. 高噪声背景下激光条纹亚像素中心的提取[J]. 应用光学, 2016, 37(2): 321-326.
Wang Li, Chen Niannian, Wu Ling, et al. Extraction of laser stripe sub-pixel center in high-noise background[J]. J. of Appl. Opt., 2016, 37(2): 321-326.

【34】Alves J, Santos J, Carvalho A, et al. Fiber Bragg sensor interrogation system based on a CCD spectrometer[C]// Proc. of IEEE Sensors, 2003, 2: 909-913.

【35】Huang J, Ma Y, Zhou B, et al. Processing method of spectral measurement using F-P etalon and ICCD[J]. Opt. Express, 2012, 20(17): 18568-18578.

【36】Mirapeix J, Cobo A, Jaúregui C, et al. Fast algorithm for spectral processing with application to on-line welding quality assurance[J]. Measurement Science and Technol., 2006, 17(10): 2623-2629.

引用该论文

SHANG Qiufeng,HU Yuting,LIU Wei. Research on Brillouin Frequency Shift Extraction Method of BOTDA Sensing System[J]. Semiconductor Optoelectronics, 2017, 38(5): 633-638

尚秋峰,胡雨婷,刘薇. BOTDA传感系统的布里渊频移提取方法研究进展[J]. 半导体光电, 2017, 38(5): 633-638

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF