首页 > 论文 > Photonics Research > 5卷 > 6期(pp:583--1)

Watt-level broadly wavelength tunable mode-locked solid-state laser in the 2 μm water absorption region

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

Abstract

We report on broadly wavelength-tunable passive mode-locking with high power operating at the 2 μm water absorption band in a Tm:CYA crystal laser. With a simple quartz plate, stable mode-locking wavelengths can be tuned from 1874 to 1973 nm, with a tunable wavelength range up to ~100 nm and maximum output power up to 1.35 W. The bandwidth is narrow as ~6 GHz, corresponding to a high coherence. To our knowledge, this is the first demonstration of wavelength-tunable mode-locking with watt-level in the 2 μm water absorption band. The high temporal coherent laser can be further applied in spectroscopy, the efficient excitation of molecules, sensing, and quantum optics.

广告组1.2 - 空间光调制器+DMD
补充资料

DOI:10.1364/PRJ.5.000583

所属栏目:Lasers and Laser Optics

基金项目:Natural Science Foundation of Jiangsu Province10.13039/501100004608 (BK20160221); Natural Science Foundation of Xuzhou, China (KC16SG247); Doctoral Research Funding of Jiangsu Normal University10.13039/501100004030 (15XLR024); Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

收稿日期:2017-07-24

录用日期:2017-09-14

网络出版日期:2017-09-14

作者单位    点击查看

Wei Zhou:Jiangsu Key Laboratory of Advanced Laser Materials and Devices, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, ChinaJiangsu Collaborative Innovation Center of Advanced Laser Technology and Emerging Industry, Jiangsu Normal University, Xuzhou 221116, Chinae-mail: weizhou@jsnu.edu.cn
Xiaodong Xu:Jiangsu Key Laboratory of Advanced Laser Materials and Devices, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, ChinaJiangsu Collaborative Innovation Center of Advanced Laser Technology and Emerging Industry, Jiangsu Normal University, Xuzhou 221116, China
Rui Xu:Jiangsu Key Laboratory of Advanced Laser Materials and Devices, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, ChinaJiangsu Collaborative Innovation Center of Advanced Laser Technology and Emerging Industry, Jiangsu Normal University, Xuzhou 221116, China
Xuliang Fan:Department of Optical Science and Engineering, Fudan University, Shanghai 200433, China
Yongguang Zhao:Jiangsu Key Laboratory of Advanced Laser Materials and Devices, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, ChinaJiangsu Collaborative Innovation Center of Advanced Laser Technology and Emerging Industry, Jiangsu Normal University, Xuzhou 221116, China
Lei Li:Jiangsu Key Laboratory of Advanced Laser Materials and Devices, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, ChinaJiangsu Collaborative Innovation Center of Advanced Laser Technology and Emerging Industry, Jiangsu Normal University, Xuzhou 221116, China
Dingyuan Tang:Jiangsu Key Laboratory of Advanced Laser Materials and Devices, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, ChinaJiangsu Collaborative Innovation Center of Advanced Laser Technology and Emerging Industry, Jiangsu Normal University, Xuzhou 221116, China
Deyuan Shen:Jiangsu Key Laboratory of Advanced Laser Materials and Devices, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, ChinaJiangsu Collaborative Innovation Center of Advanced Laser Technology and Emerging Industry, Jiangsu Normal University, Xuzhou 221116, China

联系人作者:Deyuan Shen(shendy@fudan.edu.cn)

【1】K. Sugioka, and Y. Cheng, “Ultrafast lasers—reliable tools for advanced materials processing,” Light Sci. Appl. 3 , e149 (2014).

【2】Z. Li, A. M. Heidt, N. Simakov, Y. Jung, J. M. O. Daniel, S. U. Alam, and D. J. Richardson, “Diode-pumped wideband thulium-doped fiber amplifiers for optical communications in the 1800–2050 nm window,” Opt. Express 21 , 26450–26455 (2013).

【3】E. De Tommasi, G. Casa, and L. Gianfrani, “High precision determinations of NH3 concentration by means of diode laser spectrometry at 2.005 μm,” Appl. Phys. B 85 , 257–263 (2006).

【4】W. Q. Yang, B. Zhang, G. H. Xue, K. Yin, and J. Hou, “Thirteen watt all-fiber mid-infrared supercontinuum generation in a single mode ZBLAN fiber pumped by a 2 μm MOPA system,” Opt. Lett. 39 , 1849–1852 (2014).

【5】A. A. Lagatsky, S. Calvez, J. A. Gupta, V. E. Kisel, N. V. Kuleshov, C. T. A. Brown, M. D. Dawson, and W. Sibbett, “Broadly tunable femtosecond mode-locking in a Tm:KYW laser near 2 μm,” Opt. Express 19 , 9995–10000 (2011).

【6】A. A. Lagatsky, O. L. Antipov, and W. Sibbett, “Broadly tunable femtosecond Tm: Lu2O3 ceramic laser operating around 2070 nm,” Opt. Express 20 , 19349–19354 (2012).

【7】T. Feng, K. Yang, J. Zhao, S. Zhao, W. Qiao, T. Li, T. Dekorsy, J. He, L. Zheng, Q. Wang, X. Xu, L. Su, and J. Xu, “1.21 W passively mode-locked Tm:LuAG laser,” Opt. Express 23 , 11815–11825 (2015).

【8】A. A. Lagatsky, F. Fusari, S. Calvez, J. A. Gupta, V. E. Kisel, N. V. Kuleshov, C. T. A. Brown, M. D. Dawson, and W. Sibbett, “Passive mode locking of a Tm, Ho:KY(WO4)2 laser around 2 μm,” Opt. Lett. 34 , 2587–2589 (2009).

【9】Y. C. Wang, R. J. Lan, X. Mateso, J. Li, C. Hu, C. Y. Li, S. Suomalainen, A. H rk nen, M. Guina, V. Petrov, and W. Gribner, “Broadly tunable mode-locked Ho:YAG ceramic laser around 2.1 μm,” Opt. Express 24 , 18003–18012 (2016).

【10】C. Luan, K. Yand, J. Zhao, S. Zhao, T. Li, H. Zhang, J. He, L. Song, T. Dekorsy, M. Guina, and L. Zheng, “Diode-pumped mode-locked Tm:LuAG laser at 2 μm based on GaSb-SESAM,” Opt. Lett. 42 , 839–842 (2017).

【11】A. Godard, “Infrared (2-12 μm) solid-state laser sources: a review,” C. R. Physique 8 , 1100–1128 (2007).

【12】B. M. Walsh, “Review of Tm and Ho materials: spectroscopy and lasers,” Laser Phys. 19 , 855–866 (2009).

【13】F. M. P. Leclère, M. Schoofs, F. Auger, B. B. Ing, and S. R. Mordon, “Blood flow assessment with magnetic resonance imaging after 1.9 μm diode laser-assisted microvascular anastomosis,” Lasers Surg. Med. 42 , 299–305 (2010).

【14】M. Malinauskas, A. ukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light Sci. Appl. 5 , e16133 (2016).

【15】X. Y. Chen, Q. Gao, X. L. Wang, and X. D. Li, “Experimental design and parameter optimization for laser three-dimensional (3-D) printing,” Laser Eng. 33 , 189–196 (2016).

【16】M. C. Chen, P. Arpin, T. Popmintchev, M. Gerrity, B. Zhang, M. Seaberg, D. Popmintchev, M. M. Murnane, and H. C. Kapteyn, “Bright, coherent, ultrafast soft x-ray harmonics spanning the water window from a tabletop light source,” Phys. Rev. Lett. 105 , 173901 (2010).

【17】F. Wu, W. C. Yao, H. T. Xia, Q. Y. Liu, M. M. Ding, Y. G. Zhao, W. Zhou, X. D. Xu, and D. Y. Shen, “Highly efficient continuous-wave and Q-switched Tm:CaGdAlO4 laser at 2 μm,” Opt. Mater. Express 7 , 1290–1294 (2017).

【18】W. B. Cho, A. Schmidt, J. H. Yim, S. Y. Choi, S. Lee, F. Rotermund, U. Griebner, G. Steinmeyer, V. Petrov, X. Mateos, M. C. Pujol, J. J. Carvajal, M. Aguiló, and F. Díaz, “Passive mode-locking of a Tm-doped bulk laser near 2 μm using a carbon nanotube saturable absorber,” Opt. Express 17 , 11007–11012 (2009).

【19】N. Coluccelli, G. Galzerano, D. Gatti, A. Di Lieto, M. Tonelli, and P. Laporta, “Passive mode-locking of a diode-pumped Tm:GdLiF4 laser,” Appl. Phys. B 101 , 75–78 (2010).

【20】S. F. Gao, Z. Y. You, J. L. Xu, Y. J. Sun, and C. Y. Tu, “Continuous wave laser operation of Tm and Ho co-doped CaYAlO4 and CaGdAlO4 crystals,” Mater. Lett. 141 , 59–62 (2015).

【21】L. C. Kong, Z. P. Qin, G. Q. Xie, X. D. Xu, J. Xu, P. Yuan, and L. J. Qian, “Dual-wavelength synchronous operation of a mode-locked 2-μm Tm:CaYAlO4 laser,” Opt. Lett. 40 , 356–358 (2015).

【22】J. L. Lan, X. Y. Zhang, Z. Y. Zhou, B. Xu, H. Y. Xu, Z. P. Cai, N. Chen, J. Wang, X. D. Xu, R. Soulard, and R. Moncorgé, “Passively Q-switched Tm:CaYAlO4 laser using a MoS2 saturable absorber,” IEEE Photon. Technol. Lett. 29 , 515–518 (2017).

【23】W. Zhou, X. L. Fan, H. Xue, R. Xu, Y. G. Zhao, X. D. Xu, D. Y. Tang, and D. Y. Shen, “Stable passively harmonic mode-locking dissipative pulses in 2 μm solid-state laser,” Opt. Express 25 , 1815–1823 (2017).

【24】http://hitran.iao.ru/molecule

【25】N. Coluccelli, G. Galzerano, F. Cornacchia, A. Di Lieto, M. Tonelli, and P. Laporta, “High-efficiency diode-pumped Tm: GdLiF4 laser at 1.9 μm,” Opt. Lett. 34 , 3559–3561 (2009).

【26】R. C. Stoneman, and L. Esterowitz, “Efficient, broadly tunable, laser-pumped Tm:YAG and Tm:YSGG cw lasers,” Opt. Lett. 15 , 486–488 (1990).

【27】L. A. Zenteno, H. Po, and N. M. Cho, “All-solid-state passively Q-switched mode-locked Nd-doped fiber laser,” Opt. Lett. 15 , 115–117 (1990).

【28】D. von der Linde, “Characterization of the noise in continuously operating mode-locked lasers,” Appl. Phys. B 39 , 201–217 (1986).

【29】Y. B. Liao, Polarization Optics (Science Publishing, 2003).

引用该论文

Wei Zhou, Xiaodong Xu, Rui Xu, Xuliang Fan, Yongguang Zhao, Lei Li, Dingyuan Tang, and Deyuan Shen, "Watt-level broadly wavelength tunable mode-locked solid-state laser in the 2 μm water absorption region," Photonics Research 5(6), 583 (2017)

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF