首页 > 论文 > Photonics Research > 5卷 > 6期(pp:54--1)

Kerr frequency combs in large-size, ultra-high-Q toroid microcavities with low repetition rates [Invited]

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

Abstract

By overcoming fabrication limitations, we have successfully fabricated silica toroid microcavities with both large diameter (of 1.88 mm) and ultra-high-Q factor (of 3.3×108) for the first time, to the best of our knowledge. By employing these resonators, we have further demonstrated low-threshold Kerr frequency combs on a silicon chip, which allow us to obtain a repetition rate as low as 36 GHz. Such a low repetition rate frequency comb can now be directly measured through a commercialized optical-electronic detector.

投稿润色
补充资料

DOI:10.1364/prj.5.000b54

基金项目:National Key R&D Program of China (2017YFA0303703, 2016YFA0302500); National Natural Science Foundation of China (NSFC)10.13039/501100001809 (61435007, 11574144, 61475099); Natural Science Foundation of Jiangsu Province10.13039/501100004608, China (BK20150015); Fundamental Research Funds for the Central Universities (021314380086).

收稿日期:2017-07-21

录用日期:2017-10-26

网络出版日期:2017-10-31

作者单位    点击查看

Jiyang Ma:National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, and School of Physics, Nanjing University 210093, China
Xiaoshun Jiang:National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, and School of Physics, Nanjing University 210093, China
Min Xiao:National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, and School of Physics, Nanjing University 210093, ChinaDepartment of Physics, University of Arkansas, Fayetteville, Arkansas 72701, USA

联系人作者:Xiaoshun Jiang(jxs@nju.edu.cn)

【1】T. Udem, R. Holzwarth, and T. W. H?nsch, “Optical frequency metrology,” Nature 416 , 233–237 (2002).

【2】D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288 , 635–639 (2000).

【3】S. A. Diddams, T. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “An optical clock based on a single trapped 199Hg+ ion,” Science 293 , 825–828 (2001).

【4】R. Holzwarth, T. Udem, T. W. H?nsch, J. C. Knight, W. J. Wadsworth, and P. St.J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85 , 2264–2267 (2000).

【5】S. A. Diddams, J. C. Bergquist, S. R. Jefferts, and C. W. Oates, “Standards of time and frequency at the outset of the 21st century,” Science 306 , 1318–1324 (2004).

【6】T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. H?nsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321 , 1335–1337 (2008).

【7】T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332 , 555–559 (2011).

【8】P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450 , 1214–1217 (2007).

【9】A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, I. Solomatine, D. Seidel, and L. Maleki, “Tunable optical frequency comb with a crystalline whispering gallery mode resonator,” Phys. Rev. Lett. 101 , 093902 (2008).

【10】I. S. Grudinin, N. Yu, and L. Maleki, “Generation of optical frequency combs with a CaF2 resonator,” Opt. Lett. 34 , 878–880 (2009).

【11】S. B. Papp, and S. A. Diddams, “Spectral and temporal characterization of a fused-quartz-microresonator optical frequency comb,” Phys. Rev. A 84 , 053833 (2011).

【12】B. J. M. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, and M. Lonar, “Diamond nonlinear photonics,” Nat. Photonics 8 , 369–374 (2014).

【13】H. Jung, C. Xiong, K. Y. Fong, X. Zhang, and H. X. Tang, “Optical frequency comb generation from aluminum nitride microring resonator,” Opt. Lett. 38 , 2810–2813 (2013).

【14】T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photonics 6 , 480–487 (2012).

【15】M. A. Foster, J. S. Levy, O. Kuzucu, K. Saha, M. Lipson, and A. L. Gaeta, “Silicon-based monolithic optical frequency comb source,” Opt. Express 19 , 14233–14239 (2011).

【16】Q. Lu, S. Liu, X. Wu, L. Liu, and L. Xu, “Stimulated Brillouin laser and frequency comb generation in high-Q microbubble resonators,” Opt. Lett. 41 , 1736–1739 (2016).

【17】J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4 , 37–40 (2010).

【18】L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4 , 41–45 (2010).

【19】F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Vargheses, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics 5 , 770–776 (2011).

【20】J. Li, H. Lee, T. Chen, and K. J. Vahala, “Low-pump-power, low-phase-noise, and microwave to millimeter-wave repetition rate operation in microcombs,” Phys. Rev. Lett. 109 , 233901 (2012).

【21】P. Del’Haye, T. Herr, E. Gavartin, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Octave spanning tunable frequency comb from a microresonator,” Phys. Rev. Lett. 107 , 063901 (2011).

【22】Y. Okawachi, K. Saha, J. S. Levy, Y. H. Wen, M. Lipson, and A. L. Gaeta, “Octave-spanning frequency comb generation in a silicon nitride chip,” Opt. Lett. 36 , 3398–3400 (2013).

【23】T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photonics 8 , 145–152 (2014).

【24】X. Yi, Q.-F. Yang, K. Y. Yang, M.-G. Suh, and K. Vahala, “Soliton frequency comb at microwave rates in a high-Q silica microresonator,” Optica 2 , 1078–1085 (2015).

【25】A. A. Savchenkov, A. B. Matsko, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki, “Kerr combs with selectable central frequency,” Nat. Photonics 5 , 293–296 (2011).

【26】S. Miller, K. Luke, Y. Okawachi, J. Cardenas, A. L. Gaeta, and M. Lipson, “On-chip frequency comb generation at visible wavelengths via simultaneous second- and third-order optical nonlinearities,” Opt. Express 22 , 26517–26525 (2014).

【27】S. H. Lee, D. Y. Oh, Q.-F. Yang, B. Shen, H. Wang, K. Y. Yang, Y. H. Lai, X. Yi, and K. Vahala, “Towards visible soliton microcomb generation,” arXiv:1705. 06703v2 (2017).

【28】X. Guo, C.-L. Zou, H. Jung, Z. Gong, A. Bruch, L. Jiang, and H. X. Tang, “Efficient visible frequency comb generation via Cherenkov radiation from a Kerr microcomb,” arXiv:1704. 04264v1 (2017).

【29】H. Jung, R. Stoll, X. Guo, D. Fischer, and H. X. Tang, “Green, red, and IR frequency comb line generation from single IR pump in AlN microring resonator,” Optica 1 , 396–399 (2014).

【30】Y. Yang, X. Jiang, S. Kasumie, G. Zhao, L. Xu, J. M. Ward, L. Yang, and S. N. Chormaic, “Four-wave mixing parametric oscillation and frequency comb generation at visible wavelengths in a silica microbubble resonator,” Opt. Lett. 41 , 5266–5269 (2016).

【31】C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. H?nsch, N. Picque, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5??μm based on crystalline microresonators,” Nat. Commun. 4 , 1345 (2013).

【32】A. G. Griffith, R. K. W. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6 , 6299 (2015).

【33】Y. K. Chembo, and N. Yu, “Modal expansion approach to optical-frequency-comb generation with monolithic whispering-gallery-mode resonators,” Phys. Rev. A 82 , 033801 (2010).

【34】C. Godey, I. V. Balakireva, A. Coillet, and Y. K. Chembo, “Stability analysis of the spatiotemporal Lugiato-Lefever model for Kerr optical frequency combs in the anomalous and normal dispersion regimes,” Phys. Rev. A 89 , 063814 (2014).

【35】S. B. Papp, K. Beha, P. Del’Haye, F. Quinlan, H. Lee, K. J. Vahala, and S. A. Diddams, “Microresonator frequency comb optical clock,” Optica 1 , 10–14 (2014).

【36】P. Del’Haye, O. Arcizet, A. Schliesser, R. Holzwarth, and T. J. Kippenberg, “Full stabilization of a microresonator-based optical frequency comb,” Phys. Rev. Lett. 101 , 053903 (2008).

【37】H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6 , 369–373 (2012).

【38】D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421 , 925–928 (2003).

【39】T. Chen, H. Lee, and K. Vahala, “Thermal stress in silica-on-silicon disk resonators,” Appl. Phys. Lett. 102 , 031113 (2013).

【40】M. Oxborrow, “Traceable 2D finite-element simulation of the whispering-gallery modes of axisymmetric electromagnetic resonators,” IEEE Trans. Microwave Theory Tech. 55 , 1209–1218 (2007).

【41】T. Carmon, L. Yang, and K. J. Vahala, “Dynamical thermal behavior and thermal self-stability of microcavities,” Opt. Express 12 , 4742–4750 (2004).

引用该论文

Jiyang Ma, Xiaoshun Jiang, and Min Xiao, "Kerr frequency combs in large-size, ultra-high-Q toroid microcavities with low repetition rates [Invited]," Photonics Research 5(6), B54 (2017)

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF