首页 > 论文 > 激光与光电子学进展 > 54卷 > 12期(pp:121502--1)

基于Fourier-Mellin变换的液晶显示屏显示缺陷检测

Liquid Crystal Display Defect Detection Based on Fourier-Mellin Transform

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

针对液晶显示屏(LCD)显示缺陷检测中待测图像出现的平移和旋转导致误检率过高, 传统人工检测效率低、漏检率高, 以及图像配准精度对缺陷检测准确率的影响等问题, 提出一种基于Fourier-Mellin变换的LCD显示缺陷检测方法。基本原理是利用Fourier-Mellin变换对标准图像和待测图像进行粗配准, 通过加速稳健特征/尺度不变特征变换(SURF/SIFT)算法进行细配准, 对标准图像和配准后的图像进行加权平均融合得到最终的配准图, 最后利用局部自适应阈值分割和差影法检测缺陷, 并标注缺陷的位置及信息。实验结果表明, 提出的方法对平移和旋转的稳健性好, 能够有效地检测出LCD显示缺陷, 检测准确率达到98.667%。

Abstract

Aiming at the high false detection rate due to the image translation and rotation, the low efficiency and low reliability of manual inspection, and the impact of image registration precision on the detection accuracy, a method based on Fourier-Mellin transform for liquid crystal display (LCD) defect detection is proposed. The basic fundamental of the method is as follows. The rough matching based on the Fourier-Mellin transform is performed between the detected image and the standard image firstly, and then the fine matching based on the speed-up robust features/scale-invariant feature transform (SURF/SIFT) algorithm is performed. The weighted average fusion is used for the standard image and the image after registration to obtain the final image. The LCD defects are inspected by local adaptive threshold segmentation and subtraction method, with the defect location and information marked. The experimental results show that the proposed method is robust to image translation and rotation, and can effectively detect the LCD defects with an accuracy rate up to 98.667%.

投稿润色
补充资料

中图分类号:TP391

DOI:10.3788/lop54.121502

所属栏目:机器视觉

收稿日期:2017-06-01

修改稿日期:2017-07-07

网络出版日期:--

作者单位    点击查看

朱炳斐:南京理工大学电子工程与光电技术学院, 江苏 南京 210094
陈文建:南京理工大学电子工程与光电技术学院, 江苏 南京 210094
李武森:南京理工大学电子工程与光电技术学院, 江苏 南京 210094
张峻乾:南京理工大学电子工程与光电技术学院, 江苏 南京 210094

联系人作者:陈文建(chenwj@njust.edu.cn)

备注:朱炳斐(1993—), 女, 硕士研究生, 主要从事机器视觉技术与缺陷检测方面的研究。E-mail: zhubf@njust.edu.cn

【1】Lu R S, Shi Y Q, Li Q, et al. AOI techniques for surface defect inspection[J]. Applied Mechanics and Materials, 2010, 36: 297-302.

【2】Gan Y, Zhao Q. An effective defect inspection method for LCD using active contour model[J]. IEEE Transactions on Instrumentation and Measurement, 2013, 62(9): 2438-2445.

【3】Yun J W, Gu H, Kim D H, et al. Automatic mura inspection using the principal component analysis for the TFT-LCD panel[C]. 1st IEEE International Conference on Consumer Electronics-Taipei, 2014: 109-110.

【4】Fan S, Chuang Y. Automatic detection of Mura defect in TFT-LCD based on regression diagnostics[J]. Pattern Recognition Letters, 2010, 31(5): 2397-2404.

【5】Yang Y B, Li N, Zhang Y. Automatic TFT-LCD mura detection based on image reconstruction and processing[C]. IEEE 3rd International Conference on Consumer Electronics-Berlin, 2013: 240-244.

【6】Mahesh, Subramanyam M V. Automatic feature based image registration using SIFT algorithm[C]. 2012 3rd International Conference on Computing Communication and Networking Technologies-Coimbatore, 2012: 13252223.

【7】Wang S H, You H J, Fu K. BFSIFT: a novel method to find feature matches for SAR image registration[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(4): 649-653.

【8】Alcantarilla P F, Bartoli A, Davison A J. KAZE features[C]. IEEE IAS Annual Meeting, 2012: 214-227.

【9】Wang B, Zhang J, Lu L, et al. A uniform SIFT-like algorithm for SAR image registration[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(7): 1426-1430.

【10】Huang Yuan, Da Feipeng, Tao Haiji. An automatic registration algorithm for point cloud based on feature extraction[J]. Chinese J Lasers, 2015, 42(3): 0308002.
黄源, 达飞鹏, 陶海跻. 一种基于特征提取的点云自动配准算法[J]. 中国激光, 2015, 42(3): 0308002.

【11】Wang Canjin, Sun Tao, Wang Rui, et al. Color image registration based on colored binary local invariant descriptor[J]. Chinese J Lasers, 2015, 42(1): 0109001.
王灿进, 孙涛, 王锐, 等. 基于彩色二进制局部不变特征的图像配准[J]. 中国激光, 2015, 42(1): 0109001.

【12】Yang Sa, Xia Minghua, Zheng Zhishuo. Medical image registration algorithm based on polynomial deterministic matrix and SIFT transform[J]. Laser & Optoelectronics Progress, 2016, 53(8): 081002.
杨飒, 夏明华, 郑志硕. 基于多项式确定性矩阵的SIFT医学图像配准算法[J]. 激光与光电子学进展, 2016, 53(8): 081002.

【13】Zeng Fanxuan, Li Liang, Diao Xinpeng. Iterative closest point algorithm registration based on curvature features[J].Laser & Optoelectronics Progress, 2017, 54(1): 011003.
曾繁轩, 李亮, 刁鑫鹏. 基于曲率特征的迭代最近点算法配准研究[J]. 激光与光电子学进展, 2017, 54(1): 011003.

【14】Ding Nannan, Liu Yanying, Zhang Ye, et al. Fast image registration based on SURF-DAISY algorithm and randomized kd trees[J]. Journal of Optoelectronics·Laser, 2012, 23(7): 1395-1402.
丁南南, 刘艳滢, 张叶, 等. 基于SURF—DAISY算法和随机kd树的快速图像配准[J]. 光电子·激光, 2012, 23(7): 1395-1402.

【15】Wu Yiquan, Tao Feixiang, Cao Zhaoqing. Image registration algorithm based on dual tree complex wavelet transform and SURF[J]. Systems Engineering and Electronics, 2014, 36(5): 997-1003.
吴一全, 陶飞翔, 曹照清. 利用双树复小波变换和SURF的图像配准算法[J]. 系统工程与电子技术, 2014, 36(5): 997-1003.

【16】Chen Q S, Defrise M, Deconinck F. Symmetric phase-only matched filtering of Fourier-Mellin transforms for image registration and recognition[J]. IEEE Transctions on Pattern Analysis and Machine Intelligence, 1994, 16(12): 1156-1168.

【17】Hutchison L A D, Barrett W A. Fast registration of tabular document images using the Fourier-Mellin transform[C]. 1st International Workshop on Document Image Analysis for Libraries, 2004: 253.

【18】Lu Yongfang, Lu Ke, Hou Xiangwen. Research on Image Fusion Based on the IHS Transform[J]. Bulletin of Science and Technology, 2012, 28(6): 212-214.
卢永芳, 卢珂, 侯翔文. 基于IHS变换的图像融合方法研究[J]. 科技通报, 2012, 28(6): 212-214.

引用该论文

Zhu Bingfei,Chen Wenjian,Li Wusen,Zhang Junqian. Liquid Crystal Display Defect Detection Based on Fourier-Mellin Transform[J]. Laser & Optoelectronics Progress, 2017, 54(12): 121502

朱炳斐,陈文建,李武森,张峻乾. 基于Fourier-Mellin变换的液晶显示屏显示缺陷检测[J]. 激光与光电子学进展, 2017, 54(12): 121502

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF