首页 > 论文 > 光学学报 > 37卷 > 12期(pp:1230001--1)

基于光谱拟合的燃烧场气体参数测量方法研究

Measurement Method for Gas Parameters in Combustion Flow Based on Spectroscopy Fitting

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

基于波长调制光谱(WMS)理论, 提出一种利用光谱拟合实现燃烧场气体参数测量的方法; 通过拟合谱线的谐波信号实现谱线积分吸光度、多普勒线宽和碰撞线宽的测量, 进而实现燃烧场内气体温度、压强和水蒸气浓度的测量; 通过数值仿真研究了积分吸光度和碰撞线宽对谐波信号的影响, 并在样品池中进行实验研究。结果表明:谐波信号光谱对积分吸光度的灵敏度约为1, 而对碰撞线宽的灵敏度则随碰撞线宽增大而先增大后基本不变; 光谱拟合测量方法具有较高的测量精度, 气体温度、压强、水蒸气物质的量分数的测量值与预测值的最大相对偏差分别小于4%、6%、5.5%。

Abstract

Based on wavelength modulation spectroscopy (WMS) theory, a measurement method for gas parameters in combustion flow is put forward using spectroscopy fitting. Taking advantage of fitting harmonic signals of spectral lines, the integral absorbance, Doppler width, and collisional width are measured, and then the gas temperature, pressure, and vapour concentration are measured. The numerical simulation is used to investigate the effect of the integral absorbance and collisional width on harmonic signals, and experiments are conducted in a sample cell. The results show that the sensitivity of the harmonic signal spectrum to integral absorbance is nearly 1. However, the sensitivity of the harmonic signal spectrum to collisional width firstly increases and then keeps invariant approximately with the increase of collisional width. The fitting method has a high measurement accuracy. Compared with predicted values, the maximum measurement errors of measured temperature, pressure, and vapour mole fraction are less than 4%, 6%, and 5.5%, respectively.

投稿润色
补充资料

中图分类号:O433.1

DOI:10.3788/aos201737.1230001

所属栏目:光谱学

基金项目:国家自然科学基金(61505263)

收稿日期:2017-06-19

修改稿日期:2017-07-23

网络出版日期:--

作者单位    点击查看

屈东胜:航天工程大学激光推进及其应用国家重点实验室, 北京 101416
洪延姬:航天工程大学激光推进及其应用国家重点实验室, 北京 101416
王广宇:航天工程大学激光推进及其应用国家重点实验室, 北京 101416
王明东:航天工程大学激光推进及其应用国家重点实验室, 北京 101416

联系人作者:洪延姬(hongyanji@vip.sina.com)

备注:屈东胜(1989-), 男, 博士研究生, 主要从事流场诊断技术方面的研究。E-mail: hnqudongsheng@126.com

【1】Goldenstein C S, Spearrin R M, Jeffries J B, et al. Infrared laser-absorption sensing for combustion gases[J]. Progress in Energy and Combustion Science, 2016, 60: 132-176.

【2】Yang Bin, He Guoqiang, Liu Peijin, et al. TDLAS-based measurements of parameters for incoming flow hot-firing test of air-breathing rocket engine[J]. Chinese J Lasers, 2011, 38(5): 0508006.
杨斌, 何国强, 刘佩进, 等. 利用TDLAS技术开展吸气式发动机来流热试实验参数测量[J]. 中国激光, 2011, 38(5): 0508006.

【3】Hanson R K. Applications of quantitative laser sensors to kinetics, propulsion and practical energy systems[J]. Proceedings of the Combustion Institute, 2011, 33(1): 1-40.

【4】Arndt R. Analytical line shapes for Lorentzian signals broadened by modulation[J]. Journal of Applied Physics, 1965, 36(8): 2522-2524.

【5】Philippe L C, Hanson R K. Laser diode wavelength-modulation spectroscopy for simultaneous measurement of temperature, pressure, and velocity in shock-heated oxygen flows[J]. Applied Optics, 1993, 32(30): 6090-6103.

【6】Li H J, Rieker G B, Liu X, et al. Extension of wavelength-modulation spectroscopy to large modulation depth for diode laser absorption measurements in high-pressure gases[J]. Applied Optics, 2006, 45(5): 1052-1061.

【7】Rieker G B, Jeffries J B, Hanson R K. Calibration-free wavelength-modulation spectroscopy for measurements of gas temperature and concentration in harsh environments[J]. Applied Optics, 2009, 48(29): 5546-5560.

【8】Li S J, Davidson D F, Hanson R K, et al. Shock tube measurements and model development for morpholine pyrolysis and oxidation at high pressures[J]. Combustion and Flame, 2013, 106(9): 1559-1571.

【9】Goldenstein C S, Spearrin R M, Jeffries J B, et al. Infrared laser absorption sensors for multiple performance parameters in a detonation combustor[J]. Proceedings of the Combustion Institute, 2015, 35(3): 3739-3747.

【10】Chao X, Jeffries J B, Hanson R K. Real-time, in situ, continuous monitoring of CO in a pulverized-coal-fired power plant with a 2.3 μm laser absorption sensor[J]. Applied Physics B, 2013, 110(3): 359-365.

【11】Sun K, Chao X, Sur R, et al. Wavelength modulation diode laser absorption spectroscopy for high-pressure gas sensing[J]. Applied Physics B, 2013, 110(4): 497-508.

【12】Goldenstein C S, Hanson R K. Diode-laser measurements of linestrength and temperature-dependent lineshape parameters for H2O transitions near 1.4 μm using Voigt, Rautian, Galatry, and speed-dependent Voigt profiles[J]. Journal of Quantitative Spectroscopy & Radiative Transfer, 2015, 152: 127-139.

【13】Zhou X, Jeffries J B, Hanson R K, et al. Development of a fast temperature sensor for combustion gases using a single tunable diode laser[J]. Applied Physics B, 2005, 81(5): 711-722.

引用该论文

Qu Dongsheng,Hong Yanji,Wang Guangyu,Wang Mingdong. Measurement Method for Gas Parameters in Combustion Flow Based on Spectroscopy Fitting[J]. Acta Optica Sinica, 2017, 37(12): 1230001

屈东胜,洪延姬,王广宇,王明东. 基于光谱拟合的燃烧场气体参数测量方法研究[J]. 光学学报, 2017, 37(12): 1230001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF