首页 > 论文 > 光电工程 > 44卷 > 12期(pp:1180-1186)

飞秒贝塞尔光用于可磁驱动微管道的高效加工

Microtube fabrication based on femtosecond Bessel beam and its flexible driving with external magnetic field

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

微管道是微纳领域最基本的模型之一,其结构简单、均匀,应用广泛。本文提出一种利用飞秒贝塞尔光进行激光直写,结合磁控溅射金属镀层,加工可磁驱动微管道的新方法。利用空间光调制器将飞秒激光调制成飞秒贝塞尔光,通过高数值孔径的物镜聚焦,配合精密三维压电平台的移动,实现了微管道的拉伸加工;通过后续磁控溅射镍处理后,微管道具有超顺磁特性,利用外部磁场可以有效实现驱动。本文详细研究了利用空间光调制器产生的飞秒贝塞尔光的传播和聚焦特性,提出的微管道加工新方法可实现微管道直径、长度、排布的灵活控制,加工效率高;经磁控溅射镍处理的微管道可以利用外部磁场实现在液体环境下沿特定路径的可控驱动,运动灵敏度高,环境适应性强。这种新的微管道加工方法具有灵活、可控、高效的优点,所加工的可驱动微管道在无创手术、靶向药物运输、生物成像与传感、微环境净化等领域具有广阔的应用前景。

Abstract

Microtube, with simple and uniform geometry, is one of the basic structures in micro/nano field. We present a method for the fabrication of magnetic drivable microtubes, by direct femtosecond laser writing com-bined with magnetron sputtering with metal layer. Femtosecond laser beam is modulated into Bessel beam with spatial light modulator (SLM), and then Bessel beam is focused with a high numerical aperture objective. Micro-tubes are fabricated by scanning focused femtosecond Bessel beam in a sample anchored on a three dimen-sion stage. Followed by magnetron sputtering a nickel layer, the microtubes exhibit supermagnetic property and can be flexibly driven by external magnetic field. In this study, the propagation and high numerical aperture fo-cusing properties of femtosecond Bessel beams are investigated. Microtubes, with well controlled diameter, length and distribution are efficiently fabricated. Rapid steering of nickel coated microtubes along specific route in fluid environment with external magnetic field has been realized. The steering of microtubes can be realized in various fluid environments. This method is flexible, controllable and efficient and the fabricated drivable mi-crotubes have a promising applications in noninvasive surgery, targeted drug delivery, bioimaging or biosensing and microenvironment cleaning.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN249;TN761

DOI:10.3969/j.issn.1003-501x.2017.12.005

所属栏目:光电进展

基金项目:国家自然科学基金(51675503,61475149,51405464,61675190,51605463);“中央高校基本科研业务费专项资金资助”(WK2480000002);中国博士后科学基金(2016M590578,2016M602027);中国科学院仪器工程(YZ201566);“青年千人计划”项目。

收稿日期:2017-10-19

修改稿日期:2017-11-28

网络出版日期:--

作者单位    点击查看

辛 晨:中国科学技术大学精密机械与精密仪器系,合肥 230026
杨 亮:中国科学技术大学精密机械与精密仪器系,合肥 230026
胡治江:中国科学技术大学精密机械与精密仪器系,合肥 230026
胡 凯:中国科学技术大学精密机械与精密仪器系,合肥 230026
钱冬冬:中国科学技术大学精密机械与精密仪器系,合肥 230026
胡衍雷:中国科学技术大学精密机械与精密仪器系,合肥 230026
李家文:中国科学技术大学精密机械与精密仪器系,合肥 230026
吴 东:中国科学技术大学精密机械与精密仪器系,合肥 230026

联系人作者:杨 亮(ygliang@ustc.edu.cn)

【1】Xi Wang, Solovev A A, Ananth A N, et al. Rolled-up magnetic microdrillers: towards remotely controlled minimally invasive surgery[J]. Nanoscale, 2013, 5(4): 1294-1297.

【2】Kagan D, Benchimol M J, Claussen J C, et al. Acoustic droplet vaporization and propulsion of perfluorocarbon-loaded microbullets for targeted tissue penetration and deformation[J]. Angewandte Chemie International Edition, 2012, 124(30): 7637-7640.

【3】Li Jinxing, Thamphiwatana S, Liu Wenjuan, et al. Enteric micromotor can selectively position and spontaneously propel in the gastrointestinal tract[J]. ACS Nano, 2016, 10(10): 9536-9542.

【4】Gao Wei, Kagan D, Pak O S, et al. Cargo-towing fuel-free magnetic nanoswimmers for targeted drug delivery[J]. Small, 2012, 8(3): 460-467.

【5】Yang Liang, Ji Shengyun, Xie Kenan, et al. High efficiency fabrication of complex microtube arrays by scanning focused femtosecond laser Bessel beam for trapping/releasing biological cells[J]. Optics Express, 2017, 25(7): 8144–8157.

【6】Kim S, Qiu Famin, Kim S, et al. Fabrication and characterization of magnetic microrobots for three-dimensional cell culture and targeted transportation[J]. Advanced Materials, 2013, 25(41): 5863-5868.

【7】Vilela D, Parmar J, Zeng Yongfei, et al. Graphene-based microbots for toxic heavy metal removal and recovery from water[J]. Nano Letters, 2016, 16(4): 2860–2866.

【8】Zhao Guanjia, Sanchez S, Schmidt O G, et al. Poisoning of bubble propelled catalytic micromotors: the chemical environment matters[J]. Nanoscale, 2013, 5(7): 2909-2914.

【9】Solovev A A, Mei Yongfeng, Bermúdez Urena E, et al. Catalytic microtubular jet engines self-propelled by accumulated gas bubbles[J]. Small, 2009, 5(14): 1688-1692.

【10】Solovev A A, Xi Wang, Gracias D H, et al. Self-propelled nanotools[J]. ACS Nano, 2012, 6(2): 1751-1756.

【11】Sitt A, Soukupova J, Miller D, et al. Microscale rockets and picoliter containers engineered from electrospun polymeric microtubes[J]. Small, 2016, 12(11): 1432-1439.

【12】Stankevicius E, Gertus T, Rutkauskas M, et al. Fabrication of micro-tube arrays in photopolymer SZ2080 by using three different methods of a direct laser polymerization technique[J]. Journal of Micromechanics and Microengineering, 2012, 22(6): 065022.

【13】Sattayasamitsathit S, Kou Huanhuan, Gao Wei, et al. Fully loaded micromotors for combinatorial delivery and autonomous release of cargoes[J]. Small, 2014, 10(14): 2830-2833.

【14】Gao Wei, Dong Rengfeng, Thamphiwatana S, et al. Artificial micromotors in the mouse’s stomach: A step toward in vivo use of synthetic motors[J]. ACS Nano, 2015, 9(1): 117-123.

【15】Solovev A A, Smith E J, Bof'' Bufon C C, et al. Light-controlled propulsion of catalytic microengines[J]. Angewandte Chemie International Edition, 2011, 50(46): 10875-10878.

【16】Sharma R, Velev O D. Remote steering of self-propelling microcircuits by modulated electric field[J]. Advanced Functional Materials, 2015, 25(34): 5512-5519.

【17】Balk A L, Mair L O, Mathai P P, et al. Kilohertz rotation of nanorods propelled by ultrasound, traced by microvortex advection of nanoparticles[J]. ACS Nano, 2014, 8(8): 8300-8309.

【18】Tottori S, Zhang Li, Qiu Famin, et al. Magnetic helical micromachines: fabrication, controlled swimming, and cargo transport[J]. Advanced Materials, 2012, 24(6): 811-816.

【19】Servant A, Qiu Famin, Mazza M, et al. Controlled in vivo swimming of a swarm of bacteria-like microrobotic flagella[J]. Advanced Materials, 2015, 27(19): 2981-2988.

【20】Lin Peiqiu, Wang Hui, Pang Hui. Scanning three-dimensional image with kinoform based on liquid crystal spatial light modulation[J]. Opto-Electronic Engineering, 2010, 37(3): 138-143.
林培秋, 王辉, 庞辉. 基于液晶空间光调制器的相息图扫描三维成像[J]. 光电工程, 2010, 37(3): 138-143.

【21】Rao Shenglong, Wu Peichao, Zhang Chenchu, et al. Ener-gy-controllable femtosecond laser fabrication based on spatial light modulator[J]. Chinese Journal of Lasers, 2017, 44(1): 0102008.
饶生龙, 吴培超, 张晨初, 等. 基于空间光调制器的能量可控飞秒激光加工[J]. 中国激光, 2017, 44(1): 0102008.

【22】Bhuian B, Winfield R J, O’Brien S, et al. Pattern generation using axicon lens beam shaping in two-photon polymerisa-tion[J]. Applied Surface Science, 2007, 254(4): 841-844.

【23】Mhanna R, Qiu Famin, Zhang Li, et al. Artificial bacterial flagella for remote-controlled targeted single-cell drug delivery[J]. Small, 2014, 10(10): 1953-1957.

【24】Ding Yun, Qiu Famin, Solvas X C I, et al. Microfluidic-based droplet and cell manipulations using artificial bacterial flagella[J]. Micromachines, 2016, 7(2): 25.

引用该论文

Chen Xin,Liang Yang,Zhijiang Hu,Kai Hu,Dongdong Qian,Yanlei Hu,Jiawen Li,Dong Wu. Microtube fabrication based on femtosecond Bessel beam and its flexible driving with external magnetic field[J]. Opto-Electronic Engineering, 2017, 44(12): 1180-1186

辛 晨,杨 亮,胡治江,胡 凯,钱冬冬,胡衍雷,李家文,吴 东. 飞秒贝塞尔光用于可磁驱动微管道的高效加工[J]. 光电工程, 2017, 44(12): 1180-1186

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF