首页 > 论文 > 应用激光 > 37卷 > 6期(pp:852-858)

铝合金激光冲击强化的三维数值模拟

Numerical Simulation of Laser Shock Processing in 2024 Aluminum Alloy

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

应用ABAQUS软件对激光冲击处理2024铝合金的残余应力场进行三维有限元数值模拟。详细讨论了激光功率密度、光斑尺寸、脉冲宽度(脉宽)以及冲击次数等参数对残余应力场的影响规律。计算结果表明, 光斑中心位置的残余压应力值随着激光功率密度的增大出现先增大后减小的趋势, 在激光功率密度6.19 GW/cm2 时其值最大; 光斑半径的增加主要对残余压应力层深度影响较大; 表面残余压应力最大值随着脉宽的增加而增加; 冲击次数在一定阈值范围内, 光斑中心的残余压应力增幅明显, 之后逐渐趋于饱和。在一定参数范围内, 残余压应力层深度随脉宽和冲击次数的增加而增大。

Abstract

The three-dimensional finite element simulation is applied to analyse the residual stress field of 2024 aluminum alloy induced by laser shock processing (LSP) by using the ABAQUS software. The influence law of laser parameters including laser power density, laser spot size, full width at half maximum (FWHM) and shock times on residual stress field are systematically analyzed. The calculation results show that with the increase of laser power density, the residual compressive stress at the center of the beam increases first and then decreases, and the maximum value at the laser power density is 6.19 GW/cm2. The increase of the spot radius has a great influence on the depth of the residual compressive stress layer. To some extent, the maximum value of residual compressive stress increases with the increase of FWHM. The residual compressive stress at the spot center increases significantly under certain impact times and gradually reaches saturation. Within some range of parameters, the depth of residual compressive layer increases with the increase of FWHM and impact times.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN249

DOI:10.14128/j.cnki.al.20173705.852

基金项目:国家自然科学基金资助项目(项目编号: 51175446)

收稿日期:2017-07-12

修改稿日期:2017-08-28

网络出版日期:--

作者单位    点击查看

李博民:燕山大学 河北省重型装备与大型结构力学可靠性重点实验室, 河北 秦皇岛 066004
刘新民:燕山大学 河北省重型装备与大型结构力学可靠性重点实验室, 河北 秦皇岛 066004
张晖辉:燕山大学 河北省重型装备与大型结构力学可靠性重点实验室, 河北 秦皇岛 066004
刘峰:燕山大学 河北省重型装备与大型结构力学可靠性重点实验室, 河北 秦皇岛 066004

联系人作者:李博民(983017037@qq.com)

备注:李博民(1991-), 男, 研究生, 主要研究方向为激光表面处理数值模拟。

【1】CHU J P, RIGSBEE J M, BANAS G, et al.Laser-shock processing effects on surface microstructure and mechanical properties of low carbon steel[J].Materials Science and Engineering, 1999, A(260): 260-268.

【2】CHARLES S MONTROSS, TAO WEI, LIN YE, et al.Laser shock processing and its effects on microstructure and properties of metal alloys: a review[J].International Journal of Fatigue, 2002, 24(10): 1021-1036.

【3】RUBIO-GONZALEZ C, OCANA J L, GOMEZ-ROSAS G, et al.Effect of laser shock processing on fatigue crack growth and fracture toughness of 6061-T6 aluminum alloy[J].Material Science and Engineering A, 2004(386): 291-295.

【4】龙芋宏, 李雪梅, 邹登峰, 等.微尺度激光冲击强化的影响因素分析[J].应用激光, 2011(2): 120-123.

【5】曹子文, 车志刚, 邹世坤, 等.激光冲击强化对7050铝合金紧固孔疲劳性能的影响[J].应用激光, 2013(3): 259-262.

【6】熊竻琦, 陈东林, 何卫锋, 等.有限元数值仿真在激光冲击强化中的研究与应用[J].应用激光, 2010(4): 310-313.

【7】杨建风, 周建忠, 冯爱新.激光冲击强化区的残余应力测试分析[J].应用激光, 2006(3): 157-159.

【8】唐振州, 姜银方, 李志飞, 等.光斑模型对激光冲击成形性能的影响[J].制造技术与机床, 2011(10): 101-104.

【9】BRAISTED W, BROCKMAN R.Finite element simulation of laser shock peening[J].International Journal of Fatigue, 1999, 21(7): 719-724.

【10】张兴权, 章艳, 段士伟, 等.圆杆在激光冲击作用下动态响应的数值模拟[J].中国激光, 2015(9): 150-156.

【11】HU YONGXIANG, YAO ZHENQIANG, HU JUN.Numerical simulation of residual stress field for laser shock processing[J].Chinese J Lasers, 2006, 33(6): 846-851.

【12】张永康, 周立春, 任旭东, 等.激光冲击TC4残余应力场的试验及有限元分析[J].江苏大学学报(自然科学版), 2009, 30(1): 10-13.

【13】冯爱新, 聂贵锋, 薛伟, 等.2024铝合金薄板激光冲击波加载的实验研究[J].金属学报, 2012(2): 205-210.

【14】FABBRO R, FOURNIER J, BALLARD P, et al.Physical study of laser-produced plasma in confined geometry[J].Journal of Applied Physics, 1990, 68(2): 775-784.

【15】YANG C H, HODGSON P D, LIU Q C, et al.Geometrical effects on residual stresses in 7050-T7451 aluminum alloy rods subject to laser shock peening[J].Journal of Materials Processing Technology, 2008, 201(1): 303-309.

【16】ZHANG W, YAO Y L, NOYAN I C.Microscale laser shock peening of thin films, part 1: experiment, modeling and simulation[J].Journal of Manufacturing Science & Engineering, 2004, 126(1): 10-17.

【17】HONG X, WANG S B, GUO D H, et al.Confining medium and absorptive overlay: Their effects on a laser-induced shock wave[J].Optics and Lasers in Engineering, 1998, 29(6): 447-455.

【18】JOHNSON G R, COOK W H.A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures: Proceedings of the 7th International Symposium on Ballistics[C].[S.I.]: [s.n.], 1983(21): 541-547.

【19】姜银方, 来彦玲, 张磊, 等.激光冲击材料表面“残余应力洞”形成规律与分析[J].中国激光, 2010(8): 2073-2079.

【20】曹宇鹏, 周东呈, 冯爱新, 等.激光冲击7050铝合金薄板试样形成残余应力洞的机制[J].中国激光, 2016(11): 84-93.

【21】PEYREP, FABBRO R, MERRIEN P, et al.Laser shock processing of aluminum alloys: Application to high cycle fatigue behavior[J].Materials Science and Engineering, 1996, 210(1-2): 102-113.

【22】李志勇, 朱文辉, 程经毅, 等.实验研究脉冲强激光在铝靶中诱导的冲击波[J].中国激光, 1997(3): 68-71.

【23】吴先前, 黄晨光, 宋宏伟.激光冲击强化诱导的残余应力影响因素分析[J].中国激光, 2010(10): 2632-2637.

引用该论文

Li Bomin,Liu Xinmin,Zhang Huihui,Liu Feng. Numerical Simulation of Laser Shock Processing in 2024 Aluminum Alloy[J]. APPLIED LASER, 2017, 37(6): 852-858

李博民,刘新民,张晖辉,刘峰. 铝合金激光冲击强化的三维数值模拟[J]. 应用激光, 2017, 37(6): 852-858

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF