首页 > 论文 > 激光与光电子学进展 > 55卷 > 1期(pp:11404--1)

激光选区熔化成形模具钢的发展现状及前景

Development Status and Prospect of Selective Laser Melting of Mould Steels

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

激光选区熔化(SLM)能够实现由粉末到零件的自由制造, 成形件尺寸精度高、表面粗糙度低, 特别适合具有复杂结构的模具的成形。重点介绍了SLM成形模具钢的研究现状、成形材料、工艺特点、组织演变和性能优化等, 并简要介绍了其应用现状,如随形冷却流道的应用案例等。总结了现阶段SLM成形模具钢存在的问题, 并对其未来的研究方向进行了展望与探讨。

Abstract

The free manufacture from powders to parts can be realized by the technique of selective laser melting (SLM), and the formed parts have a high size accuracy and a low surface roughness. SLM is especially suitable for the formation of the moulds with complex structures. The research status of SLM and forming of mould steels as well as their molding materials, process characteristics, microstructure evolution and performance optimization are mainly summarized. The application status such as the application of conformal cooling channels is briefly described. The existing problems in the SLM and forming of mould steels are summarized and the future research direction is prospected and discussed.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TG142.45

DOI:10.3788/lop55.011404

所属栏目:“激光增材制造技术”专题

基金项目:国家863计划(2015AA042501)、国家自然科学基金(51605176, 51375189)、湖北省科技支撑计划(2014BAA017)

收稿日期:2017-06-20

修改稿日期:2017-07-12

网络出版日期:--

作者单位    点击查看

文世峰:华中科技大学材料成形与模具技术国家重点实验室, 湖北 武汉 430074
季宪泰:华中科技大学材料成形与模具技术国家重点实验室, 湖北 武汉 430074
周燕:华中科技大学材料成形与模具技术国家重点实验室, 湖北 武汉 430074武汉工程大学机电工程学院, 湖北 武汉 430205
魏青松:华中科技大学材料成形与模具技术国家重点实验室, 湖北 武汉 430074

联系人作者:周燕(yzhou-1987@163.com)

备注:文世峰(1979-), 男, 博士, 讲师, 主要从事增材制造工艺及装备方面的研究。E-mail: royal_wen@163.com

【1】中国模具工业协会. 模具行业“十二五”发展规划[J]. 模具工业, 2011, 37(1): 1-8.

【2】Xu H L, Wen G H, Sun W,et al. Thermal behaviour of moulds with different water channels and their influence on quality in continuous casting of beam blanks[J]. Ironmaking & Steelmaking, 2010, 37(5): 380-386.

【3】阮雪榆, 李志刚, 武兵书, 等. 中国模具工业和技术的发展[J]. 模具技术, 2001, 1(2): 72-74.

【4】Jhavar S, Paul C P, Jain N K. Causes of failure and repairing options for dies and molds: a review[J]. Engineering Failure Analysis, 2013, 34(8): 519-535.

【5】Yu Y X, He B L, Li L. Review of status and development trend of die & mould materials in China and abroad[J]. Material & Heat Treatment, 2009, 38(2): 45-97.
于影霞, 何柏林, 李力. 国内外模具材料的现状及发展趋势[J]. 热加工工艺, 2009, 38(2): 45-97.

【6】Zhang X L, Cao C L, Zha X, et al. Study of manufacturing of high-end fineblanking tools[J]. Journal of Plasticity Engineering, 2013, 20(1): 68-71.
张祥林, 曹传亮, 查想, 等. 高端精冲模具的制造探讨[J]. 塑性工程学报, 2013, 20(1): 68-71.

【7】Conner B P, Manogharan G P, Martof A N,et al. Making sense of 3-D printing: creating a map of additive manufacturing products and services[J]. Additive Manufacturing, 2014, 1/2/34: 64-76.

【8】Ponche R, Kerbrat O, Mognol P, et al. A novel methodology of design for additive manufacturing applied to additive laser manufacturing process[J]. Robotics and Computer-Integrated Manufacturing, 2014, 30(4): 389-398.

【9】Song C H, Yang Y Q, Ye Z H, et al. Development of freeform design and manufacturing based on selective laser melting[J]. Laser & Optoelectronics Progress, 2013, 50(8): 080026.
宋长辉, 杨永强, 叶梓恒, 等. 基于选区激光熔化快速成型的自由设计与制造进展[J]. 激光与光电子学进展, 2013, 50(8): 080026.

【10】Yang Y Q, Wang D, Wu W H. Research progress of direct manufacturing of metal parts by selective laser melting[J]. Chinese Journal of Lasers, 2011, 38(6): 0601007.
杨永强, 王迪, 吴伟辉. 金属零件选区激光熔化直接成型技术研究进展[J]. 中国激光, 2011, 38(6): 0601007.

【11】Murr L E, Gaytan S M, Ramirez D A, et al. Metal fabrication by additive manufacturing using laser and electron beam melting technologies[J]. Journal of Materials Science & Technology, 2012, 28(1): 1-14.

【12】Li W, Liu J, Wen S, et al. Crystal orientation, crystallographic texture and phase evolution in the Ti-45Al-2Cr-5Nb alloy processed by selective laser melting[J]. Materials Characterization, 2016, 113: 125-133.

【13】Cormier D, Harrysson O, West H. Characterization of H13 steel produced via electron beam melting[J]. Rapid Prototyping Journal, 2004, 10(1): 35-41.

【14】Rnnar L, Gustafson C, Glad A. Efficient cooling with tool inserts manufactured by electron beam melting[J]. Rapid Prototyping Journal, 2007, 13(3): 128-135.

【15】Unocic R R. A fundamental investigation of process efficiencies in the laser engineered net shaping (LENS) solid freeform fabrication process[D]. Bethlehem: Lehigh University, 2002.

【16】Manvatkar V D, Gokhale A A, Reddy G J, et al. Investigation on laser engineered net shaping of multilayered structures in H13 tool steel[J]. Journal of Laser Applications, 2015, 27(3): 032010.

【17】Yang Q Z, Wei Y P, Gao P, et al. Research progress of metal additive manufacturing technologies and related materials[J]. Materials Review, 2016, 30(27): 107-124.
杨全占, 魏彦鹏, 高鹏, 等. 金属增材制造技术及其专用材料研究进展[J]. 材料导报, 2016, 30(27): 107-124.

【18】Smith C J, Derguti F, Nava E H, et al. Dimensional accuracy of electron beam melting (EBM) additive manufacture with regard to weight optimized truss structures[J]. Journal of Materials Processing Technology, 2016, 229: 128-138.

【19】Casati R, Lemke J, Tuissi A, et al. Aging behavior and mechanical performance of 18-Ni 300 steel processed by selective laser melting[J]. Metals, 2016, 6(9): 218.

【20】Song B, Zhao X, Shuai L I, et al. Differences in microstructure and properties between selective laser melting and traditional manufacturing for fabrication of metal parts: a review[J]. Frontiers of Mechanical Engineering, 2015, 10(2): 111-125.

【21】林鑫, 黄卫东. 高性能金属构件的激光增材制造[J]. 中国科学:信息科学, 2015, 45(9): 1111-1126.

【22】Huang W D, Lin X. Research progress in laser solid forming of high performance metallic components[J]. Materials China, 2010, 29(6): 12-27.
黄卫东, 林鑫. 激光立体成形高性能金属零件研究进展[J]. 中国材料进展, 2010, 29(6): 12-27.

【23】Zhao X, Wei Q, Song B, et al. Fabrication and characterization of AISI 420 stainless steel using selective laser melting[J]. Materials & Manufacturing Processes, 2015, 30(11): 1283-1289.

【24】Zhao X. Fundamental research on the microstructure and properties evolution in selective laser melted tool steels[D]. Wuhan: Huazhong University of Science and Technology, 2016.
赵晓. 激光选区熔化成形模具钢材料的组织与性能演变基础研究[D]. 武汉:华中科技大学, 2016.

【25】Sander J, Hufenbach J, Giebeler L, et al. Microstructure and properties of FeCrMoVC tool steel produced by selective laser melting[J]. Materials & Design, 2016, 89: 335-341.

【26】Chen H, Gu D, Dai D, et al. Microstructure and composition homogeneity, tensile property, and underlying thermal physical mechanism of selective laser melting tool steel parts[J]. Materials Science & Engineering A, 2016, 682: 279-289.

【27】Zhao X, Song B, Zhang Y, et al. Decarburization of stainless steel during selective laser melting and its influence on Young''s modulus, hardness and tensile strength[J]. Materials Science & Engineering A, 2015, 647: 58-61.

【28】Becker T H, Dimitrov D. The achievable mechanical properties of SLM produced maraging steel 300 components[J]. Rapid Prototyping Journal, 2016, 22(3): 487-494.

【29】Mazur M, Brincat P, Leary M, et al. Numerical and experimental evaluation of a conformally cooled H13 steel injection mould manufactured with selective laser melting[J]. International Journal of Advanced Manufacturing Technology, 2017, 93(1/2/3/4): 881-900.

【30】Chen H Y, Gu D D, Gu R H, et al. Microstructure evolution and mechanical properties of 5CrNi4Mo die steel parts by selective laser melting additive manufacturing[J]. Chinese Journal of Lasers, 2016, 43(2): 0203003.
陈洪宇, 顾冬冬, 顾荣海, 等. 5CrNi4Mo模具钢选区激光熔化增材制造组织演变及力学性能研究[J]. 中国激光, 2016, 43(2): 0203003.

【31】Zhou Y Y, Wang F, Xue C. Microstructure and mechanical properties of 3D-printing 18Ni300 die steel[J]. Physical Testing and Chemical Analysis (Physical Testing), 2016, 52(4): 243-246.
周隐玉, 王飞, 薛春. 3D 打印18Ni300模具钢的显微组织及力学性能[J]. 理化检验(物理分册), 2016, 52(4): 243-246.

【32】Ren W, Zhang G G, Xu Y X. Performance of 4Cr13 die steel by selective laser melting[J]. China Petroleum Machinery, 2016, 44(11): 107-111.
任武, 张刚刚, 徐云喜. 3D打印选区激光熔化成形4Cr13模具钢及性能研究[J]. 石油机械, 2016, 44(11): 107-111.

【33】Holzweissig M J, Taube A, Brenne F, et al. Microstructural characterization and mechanical performance of hot work tool steel processed by selective laser melting[J]. Metallurgical and Materials Transactions B, 2015, 46: 545-549.

【34】Laakso P, Riipinen T, Laukkanen A, et al. Optimization and simulation of SLM process for high density H13 tool steel parts[J]. Physics Procedia, 2016, 83: 26-35.

【35】Zhang C, Chen C J, Wang X N, et al. Effect of process parameters on porous titanium structure and mechanism of porous formation in selective laser melting[J]. Chinese Journal of Lasers, 2013, 40(1): 0103003.
张超, 陈长军, 王晓南, 等. 激光选择熔化成形工艺参数对多孔钛结构的影响及成孔机理[J]. 中国激光, 2013, 40(1): 0103003.

【36】Demir A G, Colombo P, Previtali B. From pulsed to continuous wave emission in SLM with contemporary fiber laser sources: effect of temporal and spatial pulse overlap in part quality[J]. The International Journal of Advanced Manufacturing Technology, 2017, 91: 2701-2714.

【37】Chen D N, Liu T T, Liao W H, et al. Temperature field during selective laser melting of metal powder under different scanning strategies[J]. Chinese Journal of Lasers, 2016, 43(4): 0403003.
陈德宁, 刘婷婷, 廖文和, 等. 扫描策略对金属粉末选区激光熔化温度场的影响[J]. 中国激光, 2016, 43(4): 0403003.

【38】Deng S S, Yang Y Q, Li Y, et al. Planning of area-partition scanning path and its effect on residual stress of SLM molding parts[J]. Chinese Journal of Lasers, 2016, 43(12): 1202003.
邓诗诗, 杨永强, 李阳, 等. 分区扫描路径规划及其对SLM成型件残余应力分布的影响[J]. 中国激光, 2016, 43(12): 1202003.

【39】Beal V E, Erasenthiran P, Hopkinson N, et al. Scanning strategies and spacing effect on laser fusion of H13 tool steel powder using high power Nd∶YAG pulsed laser[J]. International Journal of Production Research, 2008, 46(1): 217-232.

【40】Mertens R, Vrancken B, Holmstock N, et al. Influence of powder bed preheating on microstructure and mechanical properties of H13 tool steel SLM parts[J]. Physics Procedia, 2016, 83: 882-890.

【41】Almangour B, Grzesiak D, Yang J, et al. Nanocrystalline TiC-reinforced H13 steel matrix nanocomposites fabricated by selective laser melting[J]. Materials & Design, 2016, 96: 150-161.

【42】Almangour B, Grzesiak D, Yang J M. Selective laser melting of TiB2/H13 steel nanocomposites: influence of hot isostatic pressing post-treatment[J]. Journal of Materials Processing Technology, 2017, 244: 344-353.

【43】Ahn D G. Applications of laser assisted metal rapid tooling process to manufacture of molding & forming tools-state of the art[J]. International Journal of Precision Engineering & Manufacturing, 2011, 12(5): 925-938.

【44】Pinkerton A J. Lasers in additive manufacturing[J]. Optics & Laser Technology, 2016, 7(2): 58-63.

【45】Beal V E, Erasenthiran P, Ahrens C H, et al. Evaluating the use of functionally graded materials inserts produced by selective laser melting on the injection moulding of plastics parts[J]. Journal of Engineering Manufacture, 2007, 221(6): 945-954.

【46】Armillotta A, Baraggi R, Fasoli S. SLM tooling for die casting with conformal cooling channels[J]. The International Journal of Advanced Manufacturing Technology, 2014, 71(1/2/3/4): 573-583.

【47】Hlker R, Tekkaya A E. Advancements in the manufacturing of dies for hot aluminum extrusion with conformal cooling channels[J]. The International Journal of Advanced Manufacturing Technology, 2016, 83(5/6/7/8): 1209-1220.

【48】Brooks H, Brigden K. Design of conformal cooling layers with self-supporting lattices for additively manufactured tooling[J]. Additive Manufacturing, 2016, 11: 16-22.

【49】Mahshid R, Hansen H N, Hjbjerre K L. Strength analysis and modeling of cellular lattice structures manufactured using selective laser melting for tooling applications[J]. Materials & Design, 2016, 104: 276-283.

【50】Mazur M, Leary M, Mcmillan M, et al. SLM additive manufacture of H13 tool steel with conformal cooling and structural lattices[J]. Rapid Prototyping Journal, 2016, 22(3): 504-518.

【51】魏青松. 表面工程应用实例[例47]激光选区熔化技术3d打印模具钢工艺及应用[J]. 中国表面工程, 2016, 6: 2.

【52】Liu B, Tan J H, Wu C L. Design of injection mould with conformal cooling channel based on 3D printing[J]. Engineering Plastics Application, 2015, 41(10): 71-74.
刘斌, 谭景焕, 吴成龙. 基于3D打印的随形冷却水道注塑模具设计[J]. 工程塑料应用, 2015, 41(10): 71-74.

【53】Tan J H, Liu B, Wu C L. Design of conformal cooling channel of injection mold based on moldflow and 3D printing[J]. China Plastics Industry, 2015, 43(12): 45-48.
谭景焕, 刘斌, 吴成龙. 基于Moldflow和3D打印的注塑模具随形冷却水道设计[J]. 塑料工业, 2015, 43(12): 45-48.

【54】He B, Li X D, Hu P, et al. Investigation of design and manufacture in hot stamping tools with conformal cooling channels based on simulation and 3D-printing technology[J]. Journal of Mechanical Engineering, 2016, 52(19): 180-188.
贺斌, 李显达, 胡平, 等. 基于数值模拟和3D打印的热冲压模具随形水道设计制造研究[J]. 机械工程学报, 2016, 52(19): 180-188.

引用该论文

Wen Shifeng,Ji Xiantai,Zhou Yan,Wei Qingsong. Development Status and Prospect of Selective Laser Melting of Mould Steels[J]. Laser & Optoelectronics Progress, 2018, 55(1): 011404

文世峰,季宪泰,周燕,魏青松. 激光选区熔化成形模具钢的发展现状及前景[J]. 激光与光电子学进展, 2018, 55(1): 011404

被引情况

【1】季宪泰,陈柯宇,周燕,文世峰,魏青松,陈志平. 铬对激光选区熔化成形模具钢性能的影响. 激光与光电子学进展, 2018, 55(9): 91402--1

【2】周燕,段隆臣,吴雪良,文世峰,魏青松. 粉末粒径对激光选区熔化成形S136模具钢的磨损与抗腐蚀性能的影响. 激光与光电子学进展, 2018, 55(10): 101403--1

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF