首页 > 论文 > 激光与光电子学进展 > 55卷 > 1期(pp:11410--1)

3D飞秒激光纳米打印

3D Femtosecond Laser Nanoprinting

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

现今各个应用领域的器件微型化、功能化和集成化的发展趋势, 对微纳加工技术提出了巨大挑战。越来越多器件的核心设计都依赖于高度图案化的三维复杂微纳结构。3D飞秒激光纳米打印(FsLNP)是一种无掩模的、利用飞秒激光直写进行加工的三维增材加工技术。其高度可设计性和远超光学衍射极限的高加工精度能够充分满足复杂技术需求。基于3D飞秒激光纳米打印独特的双光子聚合机制, 只要合理设计所需材料的光聚合方案和微纳结构, 可以制备一系列效率高且性能优越的微纳器件。简要介绍了3D飞秒激光纳米打印的技术要点、基本原理和目前所涉及的典型应用。

Abstract

Devices in a diversity of application scopes are now evolving towards miniaturization, functionalization and integration. Finely-patterned 3D micro-nanostructures are in great demand as core components in more and more devices. This keeps challenging the current micro-nanofabrication techniques. 3D femtosecond laser nanoprinting (FsLNP) is an outstanding mask-free three-dimensional additive fabrication technique with both powerful designability and high accuracy far beyond the optical diffraction limit. Based on the unique two-photon photopolymerization mechanism of 3D FsLNP, a series of highly efficient and well-functioned micro-nanodevices can be fabricated when suitable photopolymerization scheme and structure arrangement are given. In this review, we briefly introduce the technical essentials and physical fundamentals of 3D FsLNP, as well as several typical application examples.

投稿润色
补充资料

中图分类号:O436

DOI:10.3788/lop55.011410

所属栏目:“激光增材制造技术”专题

基金项目:国家自然科学基金(3A515AW11411)

收稿日期:2017-08-09

修改稿日期:2017-09-05

网络出版日期:--

作者单位    点击查看

刘墨南:吉林大学物理学院, 吉林 长春 130012
李木天:吉林大学电子技术与科学学院, 集成光电子学国家重点实验室, 吉林 长春 130012
孙洪波:吉林大学电子技术与科学学院, 集成光电子学国家重点实验室, 吉林 长春 130012

联系人作者:刘墨南(graiel@jlu.edu.cn)

备注:刘墨南(1984-), 女, 博士, 讲师, 主要从事表面等离子体相关的纳米光子学方面的研究。E-mail: graiel@jlu.edu.cn

【1】Gratton S E A, Williams S S, Napier M E, et al. The pursuit of a scalable nanofabrication platform for use in material and life science applications[J]. Accounts of Chemical Research, 2008, 41(12): 1685-1695.

【2】Gates B D, Xu Q B, Stewart M, et al. New approaches to nanofabrication: Molding, printing, and other techniques[J]. Chemical Reviews, 2005, 105(4): 1171-1196.

【3】Ariga K, Hill J P, Ji Q M. Layer-by-layer assembly as a versatile bottom-up nanofabrication technique for exploratory research and realistic application[J]. Physical Chemistry Chemical Physics, 2007, 9(19): 2319-2340.

【4】Shimizu T. Bottom-up synthesis and morphological control of high-axial-ratio nanostructures through molecular self-assembly[J]. Polymer Journal, 2003, 34(32): 1-22.

【5】Shimomura M, Sawadaishi T. Bottom-up strategy of materials fabrication:A new trend in nanotechnology of soft materials[J]. Current Opinion in Colloid & Interface Science, 2001, 6(1): 11-16.

【6】Wu N, Russel W B. Micro- and nano-patterns created via electrohydrodynamic instabilities[J]. Nano Today, 2009, 4(2): 180-192.

【7】Hayden O, Agarwal R, Lu W. Semiconductor nanowire devices[J]. Nano Today, 2008, 3(5/6): 12-22.

【8】Li Y F, Zhang J H, Yang B. Antireflective surfaces based on biomimetic nanopillared arrays[J]. Nano Today, 2010, 5(2): 117-127.

【9】Kitayaporn S, Hoo J H, Boehringer K F, et al. Orchestrated structure evolution: Accelerating direct-write nanomanufacturing by combining top-down patterning with bottom-up growth[J]. Nanotechnology, 2010, 21(19): 195306.

【10】Yan Y D, Hu Z J, Zhao X S, et al. Top-down nanomechanical machining of three-dimensional nanostructures by atomic force microscopy[J]. Small, 2010, 6(6): 724-728.

【11】Chen S Y, Bomer J G, van der Wiel W G, et al. Top-down fabrication of sub-30 nm monocrystalline silicon nanowires using conventional microfabrication[J]. ACS Nano, 2009, 3(11): 3485-3492.

【12】Cheng J Y, Ross C A, Smith H I, et al. Templated self-assembly of block copolymers: Top-down helps bottom-up[J]. Advanced Materials, 2006, 18(19): 2505-2521.

【13】Zhang Y L, Chen Q D, Xia H, et al. Designable 3D nanofabrication by femtosecond laser direct writing[J]. Nano Today, 2010, 5(5): 435-448.

【14】Gattass R R, Mazur E. Femtosecond laser micromachining in transparent materials[J]. Nature Photonics, 2008, 2(4): 219-225.

【15】Li L J, Fourkas J T. Multiphoton polymerization[J]. Materials Today, 2007, 10(6): 30-37.

【16】Cumpston B H, Ananthavel S P, Barlow S, et al. Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication[J]. Nature, 1999, 398(6722): 51-54.

【17】Li L J, Gattass R R, Gershgoren E, et al. Achieving λ/20 resolution by one-color initiation and deactivation of polymerization[J]. Science, 2009, 324(5929): 910-913.

【18】Malinauskas M, Zukauskas A, Bickauskaite G, et al. Mechanisms of three-dimensional structuring of photo-polymers by tightly focussed femtosecond laser pulses[J]. Optics Express, 2010, 18(10): 10209-10221.

【19】Park S H, Yang D Y, Lee K S. Two-photon stereolithography for realizing ultraprecise three-dimensional nano/microdevices[J]. Laser & Photonics Reviews, 2009, 3(1/2): 1-11.

【20】Lee K S, Yang D Y, Park S H, et al. Recent developments in the use of two-photon polymerization in precise 2D and 3D microfabrications[J]. Polymers for Advanced Technologies, 2006, 17(2): 72-82.

【21】Lee K S, Kim R H, Yang D Y, et al. Advances in 3D nano/microfabrication using two-photon initiated polymerization[J]. Progress in Polymer Science, 2008, 33(6): 631-681.

【22】Chong T C, Hong M H, Shi L P. Laser precision engineering: From microfabrication to nanoprocessing[J]. Laser & Photonics Reviews, 2010, 4(1): 123-143.

【23】Kawata S, Sun H B, Tanaka T, et al. Finer features for functional microdevices: micromachines can be created with higher resolution using two-photon absorption[J]. Nature, 2001, 412(6848): 697-698.

【24】Sun H B, Kawata S. Two-photon photopolymerization and 3D lithographic microfabrication[J]. Cheminform, 2005, 36(10): 169-273.

【25】Xu B B, Zhang Y L, Xia H, et al. Fabrication and multifunction integration of microfluidic chips by femtosecond laser direct writing[J]. Lab on a Chip, 2013, 13(9): 1677-1690.

【26】Wei D, Chen P, Chen X D, et al. Study on femtosecond laser processing of nonmetal vascular stent[J]. Laser & Optoelectronics Progress, 2013, 50(9): 091403.
位迪, 程萍, 陈向东, 等. 基于飞秒激光加工非金属血管支架的工艺研究[J]. 激光与光电子学进展, 2013, 50(9): 091403.

【27】Jia Y C, Chen F. Advances in dielectric crystal waveguides produced by direct femtosecond laser writing[J]. Laser & Optoelectronics Progress, 2015, 53(1): 010001.
贾曰辰, 陈峰. 飞秒激光直写介电晶体光波导的研究进展[J]. 激光与光电子学进展, 2015, 53(1): 010001.

【28】Chen A M, He X M, Fei D H, et al. Theoretical study on femtosecond laser heating of two-layer metal Films[J]. Laser & Optoelectronics Progress, 2017, 54(5): 051402.
陈安民, 何喜明, 费德厚, 等. 飞秒激光加热双层金属薄膜的理论研究[J]. 激光与光电子学进展, 2017, 54(5): 051402.

【29】Meng A H, Cui D Y, Zhang X Y, et al. Femtosecond laser fabrication and sensing performance of birefringence fiber Bragg gratings[J]. Laser & Optoelectronics Progress, 2017, 54(6): 061406.
孟爱华, 崔丁元, 张轩宇, 等. 双折射光纤布拉格光栅的飞秒激光制备与传感性能[J]. 激光与光电子学进展, 2017, 54(6): 061406.

【30】Jing C R, Wang Z H, Cheng Y. Three-dimensional micro-and nano-machining based on spatiotemporal focusing technique of femtosecond laser[J]. Laser & Optoelectronics Progress, 2017, 54(4): 040005.
井晨睿, 王朝晖, 程亚. 基于飞秒激光时空聚焦技术的三维微纳加工[J]. 激光与光电子学进展, 2017, 54(4): 040005.

【31】Pang B, Scully P, Taranu A, et al. Effect of annealing on optical structures fabricated by femtosecond laser irradiation inside polyme polymethyl methacrylate[J]. Laser & Optoelectronics Progress, 2017, 54(5): 051403.
庞博, Scully P, Taranu A, 等. 退火对有机玻璃内飞秒激光制备的光学结构的影响[J]. 激光与光电子学进展, 2017, 54(5): 051403.

【32】Dewhurst R J. Measurement science and technology: A historical perspective[J]. Measurement Science & Technology, 2013, 24(1): 012006.

【33】Lim T W, Son Y, Jeong Y J, et al. Three-dimensionally crossing manifold micro-mixer for fast mixing in a short channel length[J]. Lab on a Chip, 2011, 11(1): 100-103.

【34】Deepak K L N, Rao S V, Rao D N. Femtosecond laser-fabricated microstructures in bulk poly (methylmethacrylate) and poly (dimethylsiloxane) at 800 nm towards lab-on-a-chip applications[J]. Pramana, 2010, 75(6): 1221-1232.

【35】Farson D F, Choi H W, Lu C M, et al. Femtosecond laser bulk micromachining of microfluid channels in poly (methylmethacrylate)[J]. Journal of Laser Applications, 2006, 18(3): 210-215.

【36】Wochnowski C, Cheng Y, Hanada Y, et al. Fs-laser-induced fabrication of polymeric optical and fluidic microstructures[J]. Journal of Laser Micro Nanoengineering, 2006, 1(3): 195-200.

【37】Pfleging W, Adamietz R, Brueckner H J, et al. Laser-assisted modification of polymers for microfluidic, micro-optics and cell culture applications[C]. SPIE, 2007, 6459: 645907.

【38】Kumi G, Yanez C O, Belfield K D, et al. High-speed multiphoton absorption polymerization: Fabrication of microfluidic channels with arbitrary cross-sections and high aspect ratios[J]. Lab on a Chip, 2010, 10(8): 1057-1060.

【39】Zhu X, Naumov A Y, Villeneuve D M, et al. Influence of laser parameters and material properties on micro drilling with femtosecond laser pulses[J]. Applied Physics A-Materials Science and Processing, 1999, 69(1): S367-S371.

【40】Hwang D J, Choi T Y, Grigoropoulos C P. Liquid-assisted femtosecond laser drilling of straight and three-dimensional microchannels in glass[J]. Applied Physics A, 2004, 79(3): 605-612.

【41】Shah L, Tawney J, Richardson M, et al. Femtosecond laser deep hole drilling of silicate glasses in air[J]. Applied Surface Science, 2001, 183(3/4): 151-164.

【42】Lee J T, George M C, Moore J S, et al. Multiphoton writing of three-Dimensional fluidic channels within a porous matrix[J]. Journal of the American Chemical Society, 2009, 131(32): 11294-11295.

【43】Sugioka K, Cheng Y, Midorikawa K. Three-dimensional micromachining of glass using femtosecond laser for lab-on-a-chip device manufacture[J]. Applied Physics A, 2005, 81(1): 1-10.

【44】Maruo S, Fourkas J T. Recent progress in multiphoton microfabrication[J]. Laser & Photonics Reviews, 2008, 2(1/2): 100-111.

【45】Zhang Y L, Guo L, Wei S, et al. Direct imprinting of microcircuits on graphene oxides film by femtosecond laser reduction[J]. Nano Today, 2010, 5(1): 15-20.

【46】Cerrina F. X-ray imaging: Applications to patterning and lithography[J]. Journal of Physics D: Applied Physics, 2000, 33(12): R103-R116.

【47】Grigorescu A E, Hagen C W. Resists for sub-20-nm electron beam lithography with a focus on HSQ:State of the art[J]. Nanotechnology, 2009, 20(29): 292001.

【48】Tanaka T, Sun H B, Kawata S. Rapid sub-diffraction-limit laser micro/nanoprocessing in a threshold material system[J]. Applied Physics Letters, 2002, 80(2): 312-314.

【49】Sun Y L, Li Q, Sun S M, et al. Aqueous multiphoton lithography with multifunctional silk-centred bio-resists[J]. Nature Communications, 2015, 6: 8612.

【50】Sun H B, Tanaka T, Kawata S. Three-dimensional focal spots related to two-photon excitation[J]. Applied Physics Letters, 2002, 80(20): 3673-3675.

【51】Chua C K, Leong K F, Sudarmadji N, et al. Selective laser sintering of functionally graded tissue scaffolds[J]. MRS Bulletin, 2011, 36(12): 1006-1014.

【52】Liu Z H, Zhang D Q, Sing S L, et al. Interfacial characterization of SLM parts in multi-material processing: Metallurgical diffusion between 316L stainless steel and C18400 copper alloy[J]. Materials Characterization, 2014, 94(8): 116-125.

【53】Yeong W Y, Sudarmadji N, Yu H Y, et al. Porous polycaprolactone scaffold for cardiac tissue engineering fabricated by selective laser sintering[J]. Acta Biomaterialia, 2010, 6(6): 2028-2034.

【54】Durejko T, Zietala M, Polkowski W, et al. Thin wall tubes with Fe3Al/SS316L graded structure obtained by using laser engineered net shaping technology[J]. Materials & Design, 2014, 63: 766-774.

【55】Jia A, Teoh J E M, Suntornnond R,et al. Design and 3D printing of scaffolds and tissues[J]. Engineering, 2015, 1(2): 261-268.

【56】Liu D X, Sun Y L, Dong W F, et al. Dynamic laser prototyping for biomimetic nanofabrication[J]. Laser & Photonics Reviews, 2014, 8(6): 882-888.

【57】Xu B B, Zhang Y L, Zhang R, et al. Programmable assembly of CdTe quantum dots into microstructures by femtosecond laser direct writing[J]. Journal of Materials Chemistry C, 2013, 1(31): 4699-4704.

【58】Deng Z F, Yang Q, Chen F, et al. Fabrication of large-area concave microlens array on silicon by femtosecond laser micromachining[J]. Optics Letters, 2015, 40(9): 1928-1931.

【59】Lee K, Wagermaier W, Masic A, et al. Self-assembly of amorphous calcium carbonate microlens arrays[J]. Nature Communications, 2012, 3(2): 725.

【60】Akatay A, Ataman C, Urey H. High-resolution beam steering using microlens arrays[J]. Optics Letters, 2006, 31(19): 2861-2863.

【61】Lin C P, Yang H S, Chao C K. Hexagonal microlens array modeling and fabrication using a thermal reflow process[J]. Journal of Micromechanics & Microengineering, 2003, 13(5): 775-781.

【62】Wu M H, Park C, Whitesides G M. Fabrication of arrays of microlenses with controlled profiles using gray-scale microlens projection photolithography[J]. Langmuir, 2002, 18(24): 9312-9318.

【63】Lee B K, Kim D S, Kwon T H. Replication of microlens arrays by injection molding[J]. Microsystem Technologies, 2004, 10(6/7): 531-535.

【64】Zhuang Z F, Chen Y T, Yu F H, et al. Field curvature correction method for ultrashort throw ratio projection optics design using an odd polynomial mirror surface[J]. Applied Optics, 2014, 53(22): E69-E76.

【65】Dumas D, Fendler M, Berger F, et al. Infrared camera based on a curved retina[J]. Optics Letters, 2012, 37(4): 653-655.

【66】Wang J, Guo B H, Sun Q, et al. Third-order aberration fields of pupil decentered optical systems[J]. Optics Express, 2012, 20(11): 11652-11658.

【67】Tian Z N, Yao W G, Xu J J, et al. Focal varying microlens array[J]. Optics Letters, 2015, 40(18): 4222-4225.

【68】Zhan X P, Xu Y X, Xu H L, et al. Toward on-chip unidirectional and single-mode polymer microlaser[J]. Journal of Lightwave Technology, 2017, 35(11): 2331-2336.

【69】Hwang S W, Tao H, Kim D H, et al. A physically transient form of silicon electronics[J]. Science, 2012, 337(6102): 1640-1644.

【70】Kim D H, Viventi J, Amsden J J, et al. Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics[J]. Nature Materials, 2010, 9(6): 511-517.

【71】Tsioris K, Tilburey G E, Murphy A R, et al. Functionalized-silk-based active optofluidic devices[J]. Advanced Functional Materials, 2010, 20(7): 1083-1089.

【72】Capelli R, Amsden J J, Generali G, et al. Integration of silk protein in organic and light-emitting transistors[J]. Organic Electronics, 2011, 12(7): 1146-1151.

【73】Omenetto F G, Kaplan D L. New opportunities for an ancient material[J]. Science, 2010, 329(5991): 528-531.

【74】Kim S, Marelli B, Brenckle M A, et al. All-water-based electron-beam lithography using silk as a resist[J]. Nature Nanotechnology, 2014, 9(4): 306-310.

【75】Mondia J P, Amsden J J, Lin D M, et al. Rapid nanoimprinting of doped silk films for enhanced fluorescent emission[J]. Advanced Materials, 2010, 22(41): 4596-4599.

【76】Kurland N E, Dey T, Kundu S C,et al. Precise patterning of silk microstructures using photolithography[J]. Advanced Materials, 2013, 25(43): 6207-6212.

【77】Tsioris K, Tao H, Liu M K, et al. Rapid transfer-based micropatterning and dry etching of silk microstructures[J]. Advanced Materials, 2011, 23(17): 2015-2019.

【78】Engelhardt S, Hoch E, Borchers K,et al. Fabrication of 2D protein microstructures and 3D polymer-protein hybrid microstructures by two-photon polymerization[J]. Biofabrication, 2011, 3(2): 025003.

【79】Qin X H, Gruber P, Markovic M, et al. Enzymatic synthesis of hyaluronic acid vinyl esters for two-photon microfabrication of biocompatible and biodegradable hydrogel constructs[J]. Polymer Chemistry, 2014, 5 (22): 6523-6533.

【80】Sun Y L, Dong W F, Niu L G, et al. Protein-based soft micro-optics fabricated by femtosecond laser direct writing[J]. Light: Science & Applications, 2014, 3(1): e129.

【81】Khripin C Y, Brinker C J, Kaehr B. Mechanically tunable multiphoton fabricated protein hydrogels investigated using atomic force microscopy[J]. Soft Matter, 2010, 6(12): 2842-2848.

【82】Sun Y L, Liu D X, Dong W F, et al. Tunable protein harmonic diffractive micro-optical elements[J]. Optics Letters, 2012, 37(14): 2973-2975.

【83】Sun Y L, Sun S M, Wang P, et al. Customization of protein single nanowires for optical biosensing[J]. Small, 2015, 11(24): 2869-2876.

【84】Sun Y L, Hou Z S, Sun S M, et al. Protein-based three-dimensional whispering-gallery-mode micro-lasers with stimulus-responsiveness[J]. Scientific Reports, 2015, 5: 12852.

【85】Manocchi A K, Domachuk P, Omenetto F G, et al. Facile fabrication of gelatin-based biopolymeric optical waveguides[J]. Biotechnology and Bioengineering, 2009, 103(4): 725-732.

【86】Wang P, WangY P, Tong L M. Functionalized polymer nanofibers: A versatile platform for manipulating light at the nanoscale[J]. Light: Science and Applications, 2013, 2(10): e102.

【87】Choi H W, Bong S, Farson D F, et al. Femtosecond laser micromachining and application of hot embossing molds for microfluid device fabrication[J]. Journal of Laser Applications, 2009, 21(4): 196-204.

【88】Sun Y L, Sun S M, Zheng B Y, et al. Protein-based multi-mode interference optical micro-splitters[J]. IEEE Photonics Technology Letters, 2016, 28(6): 629-632.

【89】Wu D, Wang J N, Niu L G, et al. Bioinspired fabrication of high-quality 3D artificial compound eyes by voxel-modulation femtosecond laser writing for distortion-free wide-field-of-view imaging[J]. Advanced Optical Materials, 2014, 2(8): 751-758.

【90】Jeong K H, Kim J, Lee L P. Biologically inspired artificial compound eyes[J]. Science, 2006, 312(5773): 557-561.

【91】Song Y M, Xie Y Z, Malyarchuk V, et al. Digital cameras with designs inspired by the arthropod eye[J]. Nature, 2013, 497(7447): 95-99.

【92】Floreano D, Pericet C R, Viollet S, et al. Miniature curved artificial compound eyes[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(23): 9267-9272.

引用该论文

Liu Monan,Li Mutian,Sun Hongbo. 3D Femtosecond Laser Nanoprinting[J]. Laser & Optoelectronics Progress, 2018, 55(1): 011410

刘墨南,李木天,孙洪波. 3D飞秒激光纳米打印[J]. 激光与光电子学进展, 2018, 55(1): 011410

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF