首页 > 论文 > 激光与光电子学进展 > 55卷 > 1期(pp:10501--1)

适用于薄膜硅太阳能电池背反射面的一维衍射光栅结构

One-Dimensional Diffraction Grating Structure for Rear Reflection Surface of Thin Film Silicon Solar Cells

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

有效提高薄膜硅太阳能电池光转换效率是清洁能源利用领域的一个重要问题。设计了一种以三角形一维衍射光栅为基础的薄膜硅太阳能电池的背部反射器结构,用以有效提高硅太阳能电池的光转换效率。利用时域有限差分(FDTD)法, 从光栅结构形状、倾斜角度、光栅周期以及光栅间隔等4个方面分别研究了薄膜硅太阳能电池下表面的光反射率。结果表明, 由等腰直角三角形组成的一维光栅结构的背反射能力最强, 合理增大光栅周期也将有助于提高硅太阳能电池的背面光反射率。此外, 研究还发现, 对于间隔型一维衍射光栅结构, 平面波入射光会在和光栅周期对应的波长处发生共振现象。利用该特性, 一维衍射光栅结构还可作为一种波长选择器。

Abstract

In the community of green energy utilization, it has been a key issue to effectively enhance the light conversion of thin film silicon solar cells. A rear surface reflector structure of thin film silicon solar cells based on triangular one-dimensional diffraction gratings is designed, which can effectively enhance the light utilization efficiency of the solar cells. With a variety of grating structure types, inclination angles, grating periods and grating separations, the light reflectance of the rear surface of thin film silicon solar cells are respectively studied via the finite difference time domain (FDTD) method. The results indicate that the one-dimensional grating structure consist of isosceles right triangles gives rise to an optimal rear surface reflectance, and the reasonable increase of the grating period can also enhance the light reflectance of rear surface of the silicon solar cells. Besides, the study in this work also shows that there appears a resonance peak in the reflectance curve when the light wavelength matches the grating period of the gratings. Based on this diffraction characteristics, the one-dimensional grating structures proposed in this work can also be utilized as a wavelength selector in future designs.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O436

DOI:10.3788/lop55.010501

所属栏目:衍射与光栅

基金项目:辽宁省“百千万人才工程”项目(辽百千万立项[2017]5号)、辽宁省自然科学基金(20170540044)

收稿日期:2017-08-04

修改稿日期:2017-08-14

网络出版日期:--

作者单位    点击查看

石鑫:大连大学物理科学与技术学院, 辽宁 大连 116622
孙诚:大连大学物理科学与技术学院, 辽宁 大连 116622
王晓秋:大连大学物理科学与技术学院, 辽宁 大连 116622

联系人作者:石鑫(834550844@qq.com)

备注:石鑫(1993-), 男, 硕士研究生, 主要从事纳米光学方面的研究。E-mail: 834550844@qq.com

【1】Zhang Z J, Wang T T, Zeng H P. Research progress on thin film solar cells[J]. Electronic Components and Materials, 2010, 29(11): 75-78.
张中俊, 王婷婷, 曾和平. 薄膜太阳能电池的研究进展[J]. 电子元件与材料, 2010, 29(11): 75-78.

【2】Shen H J, Lu H D, Cheng X Z. Back reflectors of thin-film silicon solar cells consisting of one-dimensional diffraction gratings and one-dimensional photonic crystal[J]. Chinese Journal of Luminescence, 2012, 33(6): 633-639.
沈宏君, 卢辉东, 程学珍. 一维衍射光栅和一维光子晶体组成的硅薄膜太阳能电池背反射器[J]. 发光学报, 2012, 33(6): 633-639.

【3】Müller J, Rech B, Springer J, et al. TCO and light trapping in silicon thin film solar cells[J]. Solar Energy, 2004, 77(6): 917-930.

【4】Macdonald D H, Cuevas A, Kerr M J, et al. Texturing industrial multicrystalline silicon solar cells[J]. Solar Energy, 2004, 76(1): 277-283.

【5】Dou X J, Min C J, Zhang Y Q, et al. Surface plasmon polaritons optical tweezers technology[J]. Acta Optica Sinica, 2016, 36(10): 1026004.
豆秀婕, 闵长俊, 张聿全, 等. 表面等离激元光镊技术[J]. 光学学报, 2016, 36(10): 1026004.

【6】Shan H Y, Zu S, Fang Z Y. Research progress in ultrafast dynamics of plasmonic hot electrons[J]. Laser & Optoelectronics Progress, 2017, 54(3): 030002.
单杭永, 祖帅, 方哲宇. 表面等离激元热电子超快动力学研究进展[J]. 激光与光电子学进展, 2017, 54(3): 030002.

【7】Li T, Chen J, Zhu S N. Manipulating surface plasmon propagation: from beam modulation to near-field holography[J]. Laser & Optoelectronics Progress, 2017, 54(5): 050002.
李涛, 陈绩, 祝世宁. 表面等离激元的传播操控: 从波束调制到近场全息[J]. 激光与光电子学进展, 2017, 54(5): 050002.

【8】Wang Y, Wang X, Li L W. Properties of light trapping of thin film solar cell based on surface plasmon polaritons[J]. Laser & Optoelectronics Progress, 2015, 52(9): 092401.
王玥, 王暄, 李龙威. 基于表面等离激元薄膜太阳能电池陷光特性的研究[J]. 激光与光电子学进展, 2015, 52(9): 092401.

【9】Wang Z X, Sun C, Wang X Q. Modification of front surface antireflection of silicon solar cells with composite metallic nanoparticle arrays[J]. Plasmonics, 2017, 12(3): 589-596.

【10】Sun C, Wang Z X, Wang X Q, et al. A surface design for enhancement of light trapping efficiencies in thin film silicon solar cells[J]. Plasmonics, 2016, 11(4): 1003-1010.

【11】Sun C, Wang X Q. Efficient light trapping structures of thin film silicon solar cells based on silver nanoparticle arrays[J]. Plasmonics, 2015, 10(6): 1307-1314.

【12】Sun C, Su J, Wang X Q. A design of thin film silicon solar cells based on silver nanoparticle arrays[J]. Plasmonics, 2015,10(3): 633-641.

【13】Ding D, Yang S E, Chen Y S, et al. Numerical simulation of light absorption enhancement in microcrystalline silicon solar cells with Al nanoparticle arrays[J]. Acta Physica Sinica, 2015, 64(24): 248801.
丁东, 杨仕娥, 陈永生, 等. Al纳米颗粒增强微晶硅薄膜太阳电池光吸收的模拟研究[J]. 物理学报, 2015, 64(24): 248801.

【14】Catchpole K R, Polman A. Design principles for particle plasmon enhanced solar cells[J]. Applied Physics Letters, 2008, 93(19): 191113.

【15】Hgglund C, Zch M, Petersson G, et al. Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons[J]. Applied Physics Letters, 2008, 92(5): 053110.

【16】Pillai S, Catchpole K R, Trupke T, et al. Surface plasmon enhanced silicon solar cells[J]. Journal of Applied Physics, 2007, 101(9): 093105.

【17】Akimov Y A, Koh W S, Ostrikov K. Enhancement of optical absorption in thin-film solar cells through the excitation of higher-order nanoparticle plasmon modes[J]. Optics Express, 2009, 17(12): 10195-10205.

【18】Rockstuhl C, Lederer F. Photon management by metallic nanodiscs in thin film solar cells[J]. Applied Physics Letters, 2009, 94(21): 213102.

【19】Zhu J, Yu Z, Jeong S, et al. Nanostructured light management for advanced photovoltaics[M]. New York: Springer, 2011: 363.

【20】Diukman I, Orenstein M. How front side plasmonic nanostructures enhance solar cell efficiency[J]. Solar Energy Materials and Solar Cells, 2011, 95(9): 2628-2631.

【21】Akimov Y A, Ostrikov K, Li E P. Surface plasmon enhancement of optical absorption in thin-film silicon solar cells[J]. Plasmonics, 2009, 4(2): 107-113.

【22】Madzharov D, Dewan R, Knipp D. Influence of front and back grating on light trapping in microcrystalline thin-film silicon solar cells[J]. Optics Express, 2011, 19(S2): A95-A107.

引用该论文

Shi Xin,Sun Cheng,Wang Xiaoqiu. One-Dimensional Diffraction Grating Structure for Rear Reflection Surface of Thin Film Silicon Solar Cells[J]. Laser & Optoelectronics Progress, 2018, 55(1): 010501

石鑫,孙诚,王晓秋. 适用于薄膜硅太阳能电池背反射面的一维衍射光栅结构[J]. 激光与光电子学进展, 2018, 55(1): 010501

被引情况

【1】李广济,陆健,王程民,张宏超,周大勇. 一维In0.3Ga0.7As太阳能电池的激光辐照模拟. 激光与光电子学进展, 2018, 55(10): 101601--1

【2】刘艳珍,崔艳霞. MAPbI3钙钛矿纳米线光电探测器. 激光与光电子学进展, 2018, 55(10): 102301--1

【3】魏博斌,孔令刚,蒋庆安,曹玉梅. 细多管CPC线性菲涅耳聚光系统仿真及实验研究. 激光与光电子学进展, 2019, 56(3): 30801--1

【4】孟宁喜,郭伟,吴立志,沈瑞琪,叶迎华,张伟. 激光诱导多孔阳极氧化铝等离子体的特性. 中国激光, 2019, 46(2): 211003--1

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF