首页 > 论文 > 激光与光电子学进展 > 55卷 > 1期(pp:11405--1)

铝合金增材制造技术研究进展

Research Progress on Technologies of Additive Manufacturing of Aluminum Alloys

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

介绍了铝合金增材制造的相关技术研究进展。着重阐述了选区激光熔化、电弧填丝增材制造、激光-电弧复合增材制造在铝合金增材制造领域的优势与发展前景。研究结果表明, 选区激光熔化的研究主要集中在成形件致密度的改善、微观组织控制和力学性能提升等方面, 现阶段的成形件的致密度已接近100%, 微观组织和力学性能优于铸件的但差于锻件的;电弧填丝增材制造的研究主要集中在大型结构的尺寸控制, 但较大的热输入量限制了成形结构的性能提升;激光-电弧复合铝合金增材制造的相关研究较少, 完善相应的工艺技术及激光与电弧的耦合行为是其发展方向。

Abstract

The research progress on the technologies related to the additive manufacturing of aluminum alloys is introduced. The advantages and development prospects of the selective laser melting, wire-arc additive manufacturing and laser-arc hybrid additive manufacturing in the field of additive manufacturing of aluminum alloys are focused. The results show that the study of selective laser melting is mainly focused on the improvement of the efficiency of space filling of formed parts, the control of microstructure and the improvement of mechanical properties. The present efficiency of space filling of formed parts is close to 100%, the microstructure and mechanical properties are better than those of the casting parts, but worse than those of the forging parts. The research on the wire arc additive manufacturing is mainly focused on the size control of large scale structures, but the improvement of performance is limited by the relatively large heat input. As for the laser-arc hybrid additive manufacturing, the related research is few, and it is the future prospect to improve the corresponding process technique and the laser-arc coupling behavior.

投稿润色
补充资料

中图分类号:TN249

DOI:10.3788/lop55.011405

所属栏目:“激光增材制造技术”专题

基金项目:国家自然科学基金(51402037)、上海市引进技术的吸收与创新计划(XC-ZXSJ-02-2016-01)

收稿日期:2017-08-11

修改稿日期:2017-09-11

网络出版日期:--

作者单位    点击查看

苗秋玉:大连理工大学机械工程学院精密与特种加工教育部重点实验室, 辽宁 大连 116024
刘妙然:大连理工大学机械工程学院精密与特种加工教育部重点实验室, 辽宁 大连 116024
赵凯:上海航天设备制造总厂, 上海 200240
马广义:大连理工大学机械工程学院精密与特种加工教育部重点实验室, 辽宁 大连 116024
吴东江:大连理工大学机械工程学院精密与特种加工教育部重点实验室, 辽宁 大连 116024

联系人作者:苗秋玉(1104858360@qq.com)

备注:苗秋玉(1994-), 女, 硕士研究生, 主要从事激光增材制造技术方面的研究。E-mail: 1104858360@qq.com

【1】Yang Q, Lu Z L, Huang F X, et al. Research on status and development trend of laser additive manufacturing[J]. Aeronautical Manufacturing Technology, 2016,507(12): 26-31.
杨强, 鲁中良, 黄福享, 等. 激光增材制造技术的研究现状及发展趋势[J]. 航空制造技术, 2016,507(12): 26-31.

【2】Wang H M. Matreials′ fundamental issues of laser additive manufacturing for high-performance large metallic components[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(10): 2690-2698.
王华明. 高性能大型金属构件激光增材制造: 若干材料基础问题[J]. 航空学报, 2014, 35(10): 2690-2698.

【3】Li D C, He J K, Tian X Y, et al. Additive manufacturing: Integrated fabrication of macro/microstructures[J]. Journal of Mechanical Engineering, 2013, 49(6): 129-135.
李涤尘, 贺健康, 田小永, 等. 增材制造: 实现宏微结构一体化制造[J]. 机械工程学报, 2013, 49(6): 129-135.

【4】Lin X, Huang W D. Laser additive manufacturing of high-performance metal components[J]. Science China: Information Science, 2015, 45(9): 1111-1126.
林鑫, 黄卫东. 高性能金属构件的激光增材制造[J]. 中国科学: 信息科学, 2015, 45(9): 1111-1126.

【5】Bremen S, Meiners W, Diatlov A. Selective laser melting[J]. Laser Technik Journal, 2012, 9(2): 33-38.

【6】Olakanmi E O, Cochrane R F, Dalgarno K W. A review on selective laser sintering/melting (SLS/SLM) of aluminium alloy powders: Processing, microstructure, and properties[J]. Progress in Materials Science, 2015, 74: 401-477.

【7】Buchbinder D, Schleifenbaum H, Heidrich S, et al. High power selective laser melting (HP SLM) of aluminum parts[J]. Physics Procedia, 2011, 12(1): 271-278.

【8】Kaufmann N, Imran M, Wischeropp T M, et al. Influence of process parameters on the quality of aluminium alloy EN AW 7075 using selective laser melting(SLM)[J]. Physics Procedia, 2016, 83: 918-926.

【9】Zhang X L, Qi H, Wei Q S. Experimental study of selective laser melted AlSi12[J]. Applied Laser, 2013, 33(4): 391-397.
张骁丽, 齐欢, 魏青松. 铝合金粉末选择性激光熔化成形工艺优化试验研究[J]. 应用激光, 2013, 33(4): 391-397.

【10】Yuan X B, Wei Q S, Wen S F, et al. Research on selective laser melting AlSi10Mg alloy powder[J]. Hot Working Technology, 2014, 43(4): 91-94.
袁学兵, 魏青松, 文世峰, 等. 选择性激光熔化AlSi10Mg合金粉末研究[J]. 热加工工艺, 2014, 43(4): 91-94.

【11】Weingarten C, Buchbinder D, Pirch N, et al. Formation and reduction of hydrogen porosity during selective laser melting of AlSi10Mg[J]. Journal of Materials Processing Technology, 2015, 221: 112-120.

【12】Shi Y J, Rometsch P, Yang K, et al. Characterisation of a novel Sc and Zr modified Al-Mg alloy fabricated by selective laser melting[J]. Materials Letters, 2017, 196: 347-350.

【13】Olakanmi E O. Selective laser sintering/melting (SLS/SLM) of pure Al, Al-Mg, and Al-Si powders: Effect of processing conditions and powder properties[J]. Journal of Materials Processing Technology, 2013, 213(8): 1387-1405.

【14】Spierings A B, Dawson K, Voegtlin M, et al. Microstructure and mechanical properties of as-processed scandium-modified aluminium using selective laser melting[J]. CIRP Annals, 2016, 65(1): 213-216.

【15】Li X P, Ji G, Chen Z, et al. Selective laser melting of nano-TiB2 decorated AlSi10Mg alloy with high fracture strength and ductility[J]. Acta Materialia, 2017, 129: 183-193.

【16】Qian D Y, Chen C J, Zhang M, et al. Study on microstructure and micro-mechanical properties of porous aluminium alloy fabricated by selective laser melting[J]. Chinese Journal of Lasers, 2016, 43(4): 0403002.
钱德宇, 陈长军, 张敏, 等. 选区激光熔化成形多孔铝合金的显微组织及微观力学性能研究[J]. 中国激光, 2016, 43(4): 0403002.

【17】Thijs L, Kempen K, Kruth J P, et al. Fine-structured aluminium products with controllable texture by selective laser melting of pre-alloyed AlSi10Mg powder[J]. Acta Materialia, 2013, 61(5): 1809-1819.

【18】Fiocchi J, Tuissi A, Bassani P, et al. Low temperature annealing dedicated to AlSi10Mg selective laser melting products[J]. Journal of Alloys and Compounds, 2017, 695: 3402-3409.

【19】Brandl E, Heckenberger U, Holzinger V, et al. Additive manufactured AlSi10Mg samples using selective laser melting (SLM): Microstructure, high cycle fatigue, and fracture behavior[J]. Materials and Design, 2012, 34: 159-169.

【20】Tang M, Pistorius P C. Oxides, porosity and fatigue performance of AlSi10Mg parts produced by selective laser melting[J]. International Journal of Fatigue, 2017, 94: 192-201.

【21】Prashanth K G, Scudino S, Klauss H J, et al. Microstructure and mechanical properties of Al-12Si produced by selective laser melting: Effect of heat treatment[J]. Materials Science & Engineering, 2014, 590(2): 153-160.

【22】Prashanth K G, Scudino S, Eckert J. Defining the tensile properties of Al-12Si parts produced by selective laser melting[J]. Acta Materialia, 2017, 126: 25-35.

【23】Zhang H, Nie X J, Zhu H H, et al. Study on high strength Al-Cu-Mg alloy fabricated by selective laser melting[J]. Chinese Journal of Lasers, 2016, 43(5): 0503007.
张虎, 聂小佳, 朱海红, 等. 激光选区熔化成形高强 Al-Cu-Mg 合金研究[J]. 中国激光, 2016, 43(5): 0503007.

【24】Zhang B, Cao Y, Wang L, et al. Anisotropy of body-centered-cubic porous structures by selective laser melting[J]. Chinese Journal of Lasers, 2017, 44(8): 0802005.
张博, 曹毅, 王玲, 等. 选区激光熔化体心立方多孔结构的各向异性[J]. 中国激光, 2017, 44(8): 0802005.

【25】Zhao X M, Qi Y H, Yu Q C, et al. Study on microstructure and mechanical properties of AlSi10Mg alloy produced by 3D printing[J]. Foundry Technology, 2016, 37(11): 2402-2404.
赵晓明, 齐元昊, 于全成, 等. AlSi10Mg 铝合金 3D 打印组织与性能研究[J]. 铸造技术, 2016, 37(11): 2402-2404.

【26】Maskery I, Aboulkhair N T, Aremu A O, et al. A mechanical property evaluation of graded density Al-Si10-Mg lattice structures manufactured by selective laser melting[J]. Materials Science & Engineering, 2016, 670: 264-274.

【27】Wang H, Kovacevic R. Rapid prototyping based on variable polarity gas tungsten arc welding for a 5356 aluminium alloy[J]. Proceedings of the Institution of Mechanical Engineers, 2001, 215(11): 1519-1527.

【28】Wang H J, Jiang W H, Ouyang J H, et al. Rapid prototyping of 4043 Al-alloy parts by VP-GTAW[J]. Journal of Materials Processing Technology, 2004, 148(1): 93-102.

【29】Shen C, Pan Z X, Cuiuri D, et al. In-depth study of the mechanical properties for Fe3 Al based iron aluminide fabricated using the wire-arc additive manufacturing process[J]. Materials Science and Engineering, 2016, 669: 118-126.

【30】Ding D H, Pan Z X, van Duin S, et al. Fabricating superior NiAl bronze components through wire arc additive manufacturing[J]. Materials, 2016, 9(8): 652.

【31】Ding D H, Pan Z X, Cuiuri D, et al. A multi-bead overlapping model for robotic wire and arc additive manufacturing (WAAM)[J]. Robotics and Computer-Integrated Manufacturing, 2015, 31: 101-110.

【32】Ding D H, Pan Z X, Cuiuri D, et al. Adaptive path planning for wire-feed additive manufacturing using medial axis transformation[J]. Journal of Cleaner Production, 2016, 133: 942-952.

【33】Bai J Y, Wang J H, Lin S B, et al. Width prediction of aluminum alloy weld additively manufactured by TIG arc[J]. Transactions of the China Welding Institution, 2015, 36(9): 87-90.
柏久阳, 王计辉, 林三宝, 等. 铝合金电弧增材制造焊道宽度尺寸预测[J]. 焊接学报, 2015, 36(9): 87-90.

【34】Bai J Y, Wang J H, Shi J H, et al. Microstructure and mechanical properties of 4043-Al alloy thin-walled components produced by additive manufacturing with TIG welding[J]. Welding&Joining, 2015(10): 23-26.
柏久阳, 王计辉, 师建行, 等. TIG增材制造4043铝合金薄壁零件组织及力学性能[J]. 焊接, 2015(10): 23-26.

【35】Geng H B, Li J L, Xiong J T, et al. Optimization of wire feed for GTAW based additive manufacturing[J]. Journal of Materials Processing Technology, 2017, 243: 40-47.

【36】Huang D, Zhu Z H, Geng H B, et al. TIG wire and arc additive manufacturing of 5A06 aluminium alloy[J]. Journal of Materials Engineering, 2017, 45(3): 66-72.
黄丹, 朱志华, 耿海滨, 等. 5A06铝合金TIG丝材-电弧增材制造工艺[J]. 材料工程, 2017, 45(3): 66-72.

【37】Cong B Q, Ding J L. Influence of CMT process on porosity of wire arc additive manufactured Al-Cu alloy[J]. Rare Metal Materials and Engineering, 2014, 43(12): 3149-3153.
从保强, 丁佳洛. CMT工艺对 Al-Cu 合金电弧增材制造气孔的影响[J]. 稀有金属材料与工程, 2014, 43(12): 3149-3153.

【38】Sun H Y, Cong B Q, Su Y, et al. Geometry, microstructure and properties of wire+arc additive manufacturing Al-6.3 Cu alloy deposits[J]. Aeronautical Manufacturing Technology, 2017(14): 72-76.
孙红叶, 从保强, 苏勇, 等. Al-6.3Cu铝合金电弧增材制造成形与组织性能[J]. 航空制造技术, 2017(14): 72-76.

【39】Cong B Q, Su Y, Qi B J, et al. Wire+arc additive manufacturing for aluminium alloy deposits[J]. Aeronautical Manufacturing Technology, 2016(3): 29-37.
从保强, 苏勇, 齐铂金, 等. 铝合金电弧填丝增材制造技术研究[J]. 航天制造技术, 2016(3): 29-37.

【40】Zhuang Z L, Song G, Zhu M L, et al. Rapid prototyping aluminum alloy with vertical deposition by laser-arc hybrid heat source[J]. Transactions of the China Welding Institution, 2013, 34(5): 71-74.
庄忠良, 宋刚, 祝美丽, 等. 激光-MIG复合热源铝合金层间堆积快速成形[J]. 焊接学报, 2013, 34(5): 71-74.

【41】王鹏, 张兆栋, 宋刚, 等. 铝合金激光-电弧复合增材制造工艺分析[J]. 焊接技术, 2016, 45(10): 10-13.

【42】孙承帅, 张兆栋, 刘黎明. 激光诱导MIG电弧增材制造5356铝合金薄壁零件组织及力学性能[J]. 焊接技术, 2017, 46(5): 47-50.

引用该论文

Miao Qiuyu,Liu Miaoran,Zhao Kai,Ma Guangyi,Wu Dongjiang. Research Progress on Technologies of Additive Manufacturing of Aluminum Alloys[J]. Laser & Optoelectronics Progress, 2018, 55(1): 011405

苗秋玉,刘妙然,赵凯,马广义,吴东江. 铝合金增材制造技术研究进展[J]. 激光与光电子学进展, 2018, 55(1): 011405

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF