首页 > 论文 > 激光与光电子学进展 > 55卷 > 1期(pp:11415--1)

基于三维打印技术的太赫兹波段的柱透镜

Terahertz Cylindrical Lenses Based on Three-Dimensional Printing Technique

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

设计了一种工作在太赫兹波段的柱透镜, 并且使用三维(3D)打印技术制作出了样品。对样品进行了测试, 将测试结果与数值仿真结果以及商用太赫兹柱透镜的测试结果进行了对比。结果表明, 两种柱透镜的焦距均在100 mm左右, 与仿真结果相符, 且打印的柱透镜在不同传播距离下的光斑半峰全宽与商用柱透镜的很接近, 证明了3D打印技术可以用于制作太赫兹波段的柱透镜等光学器件。

Abstract

A cylindrical lens working in the terahertz (THz) frequency range is designed and its sample is also fabricated by using the three-dimensional (3D) printing technique. A test on this sample is conducted. The comparison among the testing results, the simulation results, and the testing results of the commercial THz lenses is made. The results show that the focal lengths of two kinds of lenses are both about 100 mm, which matches with the simulation results. Moreover, under different propagation distances, the full widths at half maximum of spots for the printed lenses are very close to those for the commercial lenses, which proves that the 3D printing technique can be used in the fabrication of THz optical devices, such as cylindrical lenses.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O436

DOI:10.3788/lop55.011415

所属栏目:“激光增材制造技术”专题

基金项目:国家自然科学基金(61475054, 11574105, 61405063)、湖北省科技条件资源开发项目(2015BCE052)

收稿日期:2017-08-14

修改稿日期:2017-09-28

网络出版日期:--

作者单位    点击查看

张涵祎:华中科技大学武汉光电国家实验室, 湖北 武汉 430074
王可嘉:华中科技大学武汉光电国家实验室, 湖北 武汉 430074
张玉立:华中科技大学武汉光电国家实验室, 湖北 武汉 430074
叶曦:华中科技大学光学与电子信息学院, 湖北 武汉 430074
刘劲松:华中科技大学武汉光电国家实验室, 湖北 武汉 430074
杨振刚:华中科技大学光学与电子信息学院, 湖北 武汉 430074
汪盛烈:华中科技大学武汉光电国家实验室, 湖北 武汉 430074

联系人作者:张涵祎(bluemess@foxmail.com)

备注:张涵祎(1994-), 男, 硕士研究生, 主要从事太赫兹器件与系统方面的研究。E-mail: bluemess@foxmail.com

【1】Lee Y S. Principles of terahertz science and technology[M]. New York: Springer Science & Business Media, 2009: 1-3.

【2】许景周, 张希成. 太赫兹科学技术和应用[M]. 北京: 北京大学出版社, 2007: 1-4.

【3】Kemp M C, Taday P F, Cole B E, et al. Security applications of terahertz technology[C]. SPIE, 2003, 5070: 44-52.

【4】Yamamoto K, Yamaguchi M, Miyamaru F, et al. Noninvasive inspection of C-4 explosive in mails by terahertz time-domain spectroscopy[J]. Japanese Journal of Applied Physics, 2004, 43(3B): L414-L417.

【5】Kawano Y, Uchida T, Ishibashi K. Terahertz sensing with a carbon nanotube/two-dimensional electron gas hybrid transistor[J]. Applied Physics Letters, 2009, 95(8): 083123.

【6】Chan W L, Deibel J, Mittleman D M. Imaging with terahertz radiation[J]. Reports onProgress in Physics, 2007, 70(8): 1325-1379.

【7】Grant P D, Laframboise S R, Dudek R, et al. Terahertz free space communications demonstration with quantum cascade laser and quantum well photodetector[J]. Electronics Letters, 2009, 45(18): 952-954.

【8】Kleine-Ostmann T, Nagatsuma T. A review on terahertz communications research[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2011, 32(2): 143-171.

【9】Siegel P H. Terahertz technology in biology and medicine[J]. IEEE Transactions on Microwave Theory and Techniques, 2004, 52(10): 2438-2447.

【10】Son J H. Terahertz biomedical applications[C]. General Assembly and Scientific Symposium, 2014: 14693826.

【11】Goto M, Quema A, Takahashi H, et al. Teflon photonic crystal fiber as terahertz waveguide[J]. Japanese Journal of Applied Physics, 2004, 43(2B): L317-L319.

【12】Nagel M, Marchewka A, Kurz H. Low-index discontinuity terahertz waveguides[J]. Optics Express, 2006, 14(21): 9944-9954.

【13】Chen D R, Chen H B. A novel low-loss terahertz waveguide: Polymer tube[J]. Optics Express, 2010, 18(4): 3762-3767.

【14】Turchinovich D, Kammoun A, Knobloch P, et al. Flexible all-plastic mirrors for the THz range[J]. Applied Physics A, 2002, 74(2): 291-293.

【15】Lai W E, Zhu Y H, Zhang H W, et al. A novel reflector of AZO thin films applicable for terahertz devices[J]. Optical Materials, 2013, 35(6): 1218-1221.

【16】Jrdens C, Chee K L, Alnaib I, et al. Dielectric fibres for low-loss transmission of millimetre waves and its application in couplers and splitters[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2010, 31(2): 214-220.

【17】Zhang M E, Li X J, Liang S X, et al. Terahertz Brewster polarizing beam splitter on a polymer substrate[J]. Chinese Optics Letters, 2013, 11(12): 122301-122303.

【18】Masson J B, Gallot G. Terahertz achromatic quarter-wave plate[J]. Optics Letters, 2006, 31(2): 265-267.

【19】Gong Y D, Dong H. Terahertz waveplate made with transparency[C]. International Conference on Infrared, Millimeter, and Terahertz Waves, 2012: 13192594.

【20】Wang L, Lin X W, Hu W, et al. Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes[J]. Light: Science and Applications, 2015, 4: 1-6.

【21】Neu J, Krolla B, Paul O, et al. Metamaterial-based gradient index lens with strong focusing in the THz frequency range[J]. Optics Express, 2010, 18(26): 27748-27757.

【22】Scherger B, Jrdens C, Koch M. Variable-focus terahertz lens[J]. Optics Express, 2011, 19(5): 4528-4535.

【23】Yang M W, Ji H B, Tan Z Y, et al. Terahertz joint analyzer with imaging and spectrum detection[J]. Acta Optica Sinica, 2016, 36(6): 0611004.
杨旻蔚, 季海兵, 谭智勇, 等. 成像与成谱联动的太赫兹分析检测仪[J]. 光学学报. 2016, 36(6): 0611004.

【24】Cunningham P D, Valdes N N, Vallejo F A, et al. Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials[J]. Journal of Applied Physics, 2011, 109(4): 043505.

【25】Lin X C, Liu H G. Continuous liquid interface production 3D printing technology and its application in fabrication of architecture models[J]. Acta Optica Sinica, 2016, 36(8): 0816002.
林宣成, 刘华刚. 连续液面成型3D打印技术及建筑模型制作[J]. 光学学报, 2016, 36(8): 0816002.

【26】Zhai J H, Wang Q B, Wei X H, et al. Repair of scraper conveyor sprocket based on metal 3D printing[J]. Chinese Journal of Lasers, 2017, 44(4): 0402007.
翟建华, 王乾宝, 魏晓华, 等. 基于金属3D打印的刮板输送机链轮修复技术[J]. 中国激光, 2017, 44(4): 0402007.

【27】Pandey S, Gupta B, Nahata A. Terahertz plasmonic waveguides created via 3D printing[J]. Optics Express, 2013, 21(21): 24422-24430.

【28】Ng W R, Golish D R, Xin H, et al. Direct rapid-prototyping fabrication of computer-generated volume holograms in the millimeter-wave and terahertz regime[J]. Optics Express, 2014, 22(3): 3349-3355.

【29】Kaur A, Myers J C, Ghazali M I M, et al. Affordable terahertz components using 3D printing[C]. Electronic Components and Technology Conference, 2015: 15304193.

【30】Squires A D, Constable E, Lewis R A. 3D printed terahertz diffraction gratings and lenses[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2015, 36(1): 72-80.

【31】Zhang Z Q, Wei X L, Liu C M, et al. Rapid fabrication of terahertz lens via three-dimensional printing technology[J]. Chinese Optics Letters, 2015, 13(2): 022201.

【32】Wei X L, Liu C M, Niu L T, et al. Generation of arbitrary order Bessel beams via 3D printed axicons at the terahertz frequency range[J]. Applied Optics, 2015, 54(36): 10641-10649.

【33】Courtial J, Padgett M J. Performance of a cylindrical lens mode converter for producing Laguerre-Gaussian laser modes[J]. Optics Communications, 1999, 159(1): 13-18.

【34】Jiang Z, Zhang X C. Single-shot spatiotemporal terahertz field imaging[J]. Optics Letters, 1998, 23(14): 1114-1116.

【35】Lu Z L, Chen C H, Schuetz C A, et al. Subwavelength imaging by a flat cylindrical lens using optimized negative refraction[J]. Applied Physics Letters, 2005, 87(9): 091907.

【36】Huang S W, Granados E, Huang W R, et al. High conversion efficiency, high energy terahertz pulses by optical rectification in cryogenically cooled lithium niobate[J]. Optics Letters, 2013, 38(5): 796-798.

【37】张以谟. 应用光学[M]. 北京: 电子工业出版社, 1982: 55-57.

引用该论文

Zhang Hanyi,Wang Kejia,Zhang Yuli,Ye Xi,Liu Jinsong,Yang Zhengang,Wang Shenglie. Terahertz Cylindrical Lenses Based on Three-Dimensional Printing Technique[J]. Laser & Optoelectronics Progress, 2018, 55(1): 011415

张涵祎,王可嘉,张玉立,叶曦,刘劲松,杨振刚,汪盛烈. 基于三维打印技术的太赫兹波段的柱透镜[J]. 激光与光电子学进展, 2018, 55(1): 011415

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF