首页 > 论文 > 激光与光电子学进展 > 55卷 > 1期(pp:11413--1)

激光冲击强化对电弧增材2319铝合金微观组织及残余应力的影响

Effect of Laser Shock Peening on Microstructure and Residual Stress of Wire-Arc Additive Manufactured 2319 Aluminum Alloy

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

利用激光冲击强化(LSP)与电弧增材制造(WAAM)复合技术, 改善增材构件微观组织及应力状态, 并研究LSP前后WAAM 2319铝合金的微观组织、显微硬度以及深度方向残余应力分布。研究结果表明, LSP能够减小WAAM 2319铝合金的晶粒尺寸, 优化残余应力分布。LSP后, 增材构件的平均晶粒直径由冲击前的68.86 μm减小到34.32 μm, 显微硬度由冲击前的67.8 HV增大到100.6 HV;残余压应力的最大值约为90 MPa, 影响深度为0.65 mm。

Abstract

The microstructure and stress state of the additive parts are improved by the combination of laser shock peening (LSP) and wire-arc additive manufacturing (WAAM) technologies. The microstructures, microhardness and residual stress distributions in the depth direction of 2319 aluminum alloys fabricated by WAAM before and after LSP are investigated. The research results show that LSP can significantly refine the grain size and improve the residual stress distribution of 2319 aluminum alloys fabricated by WAAM. After LSP, the average grain diameter of additive parts decreases from 68.86 μm before LSP to 34.32 μm, and the microhardness increases from 67.8 HV before LSP to 100.6 HV. The maximum residual compressive stress is about 90 MPa and the influence depth is 0.65 mm.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN249

DOI:10.3788/lop55.011413

所属栏目:“激光增材制造技术”专题

基金项目:国家自然科学基金(11372019)、国家国际重大合作专项(2013DFR50590)、民用飞机专项科研项目(MJ-2016-F-16)

收稿日期:2017-08-15

修改稿日期:2017-08-28

网络出版日期:--

作者单位    点击查看

孙汝剑:北京航空航天大学机械工程及自动化学院, 北京 100191
朱颖:北京航空航天大学机械工程及自动化学院, 北京 100191
李刘合:北京航空航天大学机械工程及自动化学院, 北京 100191
郭伟:北京航空航天大学机械工程及自动化学院, 北京 100191
彭鹏:北京航空航天大学机械工程及自动化学院, 北京 100191

联系人作者:郭伟(gwei@buaa.edu.cn)

备注:孙汝剑(1991-), 男, 博士研究生, 主要从事航空钛合金激光冲击强化技术方面的研究。E-mail: sunrujian@buaa.edu.cn

【1】Heinz A, Haszler A, Keidel C, et al. Recent development in aluminium alloys for aerospace applications[J]. Materials Science & Engineering A, 2000, 280(1): 102-107.

【2】Zhang R. Research on the aluminum alloy arc additive manufacturing (3D printing) technology and process based on the CMT[D]. Nanjing: Nanjing University of Science & Technology, 2016.
张瑞. 基于CMT的铝合金电弧增材制造(3D打印)技术及工艺研究[D]. 南京: 南京理工大学, 2016.

【3】Lu B H, Li D C. Development of the additive manufacturing (3D printing) technology[J]. Machine Building & Automation, 2013, 42(4): 1-4.
卢秉恒, 李涤尘. 增材制造(3D打印)技术发展[J]. 机械制造与自动化, 2013, 42(4): 1-4.

【4】Szost B A, Terzi S, Martina F, et al. A comparative study of additive manufacturing techniques: Residual stress and microstructural analysis of CLAD and WAAM printed Ti-6Al-4V components[J]. Materials & Design, 2016, 89: 559-567.

【5】Williams S W, Martina F, Addison A C, et al. Wire + arc additive manufacturing[J]. Materials Science & Technology, 2015(7): 641-647.

【6】Cong B Q, Ding J L. Influence of CMT process on porosity of wire arc additive manufactured Al-Cu alloy[J]. Rare Metal Materials and Engineering, 2014, 43(12): 3149-3153.
从保强, 丁佳洛. CMT工艺对Al-Cu合金电弧增材制造气孔的影响[J]. 稀有金属材料与工程, 2014, 43(12): 3149-3153.

【7】Cong B Q, Ding J L, Williams S. Effect of arc mode in cold metal transfer process on porosity of additively manufactured Al-6.3%Cu alloy[J]. International Journal of Advanced Manufacturing Technology, 2015, 76(9/10/11/12): 1593-1606.

【8】Moat R J, Pinkerton A J, Li L, et al. Residual stresses in laser direct metal deposited Waspaloy[J]. Materials Science & Engineering A, 2011, 528(6): 2288-2298.

【9】Colegrove P A, Coules H E, Fairman J, et al. Microstructure and residual stress improvement in wire and arc additively manufactured parts through high-pressure rolling[J]. Journal of Materials Processing Technology, 2013, 213(10): 1782-1791.

【10】Montross C S, Wei T, Ye L, et al. Laser shock processing and its effects on microstructure and properties of metal alloys: A review[J]. International Journal of Fatigue, 2002, 24(10): 1021-1036.

【11】Liao Y L, Ye C, Cheng G J. A review: Warm laser shock peening and related laser processing technique[J]. Optics & Laser Technology, 2016, 78: 15-24.

【12】Li W, Li Y H, He W F, et al. Development and application of laser shock processing[J]. Laser & Optoelectronics Progress, 2008, 45(12): 15-19.
李伟, 李应红, 何卫锋, 等. 激光冲击强化技术的发展和应用[J]. 激光与光电子学进展, 2008, 45(12): 15-19.

【13】Qiao H C, Gao Y, Zhao J B, et al. Research process of laser peening technology[J]. The Chinese Journal of Nonferrous Metals, 2015, 25(7): 1744-1755.
乔红超, 高宇, 赵吉宾, 等. 激光冲击强化技术的研究进展[J]. 中国有色金属学报, 2015, 25(7): 1744-1755.

【14】Ding K, Ye L. Laser shock peening: Performance and process simulation[M]. Cambridge: Woodhead Publishing Limited, 2006.

【15】Ye C H, Suslov S, Kim B J, et al. Fatigue performance improvement in AISI 4140 steel by dynamic strain aging and dynamic precipitation during warm laser shock peening[J]. Acta Materialia, 2011, 59(3): 1014-1025.

【16】Hu Y X, Yao Z Q, Hu J. 3-D FEM simulation of laser shock processing[J]. Surface & Coatings Technology, 2006, 201(3/4): 1426-1435.

【17】Lu J Z, Luo K Y, Zhang Y K, et al. Grain refinement of LY2 aluminum alloy induced by ultra-high plastic strain during multiple laser shock processing impacts[J]. Acta Materialia, 2010, 58(11): 3984-3994.

【18】Rubio-González C, Ocaa J L, Gomez-Rosas G, et al. Effect of laser shock processing on fatigue crack growth and fracture toughness of 6061-T6 aluminum alloy[J]. Materials Science & Engineering A, 2004, 386(1/2): 291-295.

【19】Sun H, Zhu Y, Guo W, et al. Effect of laser shock peening on residual stress and microstructure of TC17 titanium alloy[J]. Laser & Optoelectronics Progress, 2017, 54(4): 041405.
孙浩, 朱颖, 郭伟, 等. 激光冲击强化对TC17钛合金残余应力及显微组织的影响[J]. 激光与光电子学进展, 2017, 54(4): 041405.

【20】Sun R J, Zhu Y, Guo W, et al. Effect of laser shock processing on surface morphology and residual stress field of TC17 titanium alloy by FEM method[J]. Journal of Plasticity Engineering, 2017, 24(1): 187-193.
孙汝剑, 朱颖, 郭伟, 等. 激光冲击强化对TC17表面形貌及残余应力场影响的有限元数值模拟研究[J]. 塑性工程学报, 2017, 24(1): 187-193.

【21】Sun R J, Li L H, Zhu Y, et al. Dynamic response and residual stress fields of Ti6Al4V alloy under shock wave induced by laser shock peening[J]. Modelling and Simulation in Materials Science and Engineering, 2017, 25(6): 065016.

【22】Li Y Q, Meng C J, Wang X D, et al. Corrosion resistance property of 316L stainless steel welding joints treated by laser shock peening[J]. Laser & Optoelectronics Progress, 2017, 54(6): 061402.
李玉琴, 孟长军, 王学德, 等. 激光冲击强化316L不锈钢焊接接头的耐腐蚀性能[J]. 激光与光电子学进展, 2017, 54(6): 061402.

【23】Li D L, He W F, You X, et al. Experimental research on improving fatigue strength of wounded TC4 titanium alloy by laser shock peening[J]. Chinese Journal of Lasers, 2016, 43(7): 0702006.
李东霖, 何卫锋, 游熙, 等. 激光冲击强化提高外物打伤TC4钛合金疲劳强度的试验研究[J]. 中国激光, 2016, 43(7): 0702006.

【24】Liu Y, Lu J Z, Luo K Y, et al. Effect of laser shock processing on tensile property and fracture morphology of CP-Ti under elevated temperature condition[J]. Chinese Journal of Lasers, 2016, 43(9): 0902005.
刘月, 鲁金忠, 罗开玉, 等. 升温条件下激光冲击强化对工业纯钛拉伸性能和断口形貌的影响[J]. 中国激光, 2016, 43(9): 0902005.

【25】Kalentics N, Boillat E, Peyre P, et al. 3D laser shock peening--A new method for the 3D control of residual stresses in selective laser melting[J]. Materials & Design, 2017, 130: 350-356.

【26】Hall E O. Thedeformation and ageing of mild steel: II characteristics of the Lüders deformation[C]. Cambridge: Proceedings of the Physical Society, 1951, 64(9): 742.

【27】Petch N J. Thecleavage strength of polycrystals[J]. The Journal of the Iron and Steel Institute, 1953,173: 25-27.

【28】Armstrong R W. 60 years of Hall-Petch: Past to present nano-scale connections[J]. Materials Transactions, 2014, 55(1): 2-12.

【29】Lu J Z, Wu U, Sun G F, et al. Microstructural response and grain refinement mechanism of commercially pure titanium subjected to multiple laser shock peening impacts[J]. Acta Materialia, 2017, 127: 252-266.

引用该论文

Sun Rujian,Zhu Ying,Li Liuhe,Guo Wei,Peng Peng. Effect of Laser Shock Peening on Microstructure and Residual Stress of Wire-Arc Additive Manufactured 2319 Aluminum Alloy[J]. Laser & Optoelectronics Progress, 2018, 55(1): 011413

孙汝剑,朱颖,李刘合,郭伟,彭鹏. 激光冲击强化对电弧增材2319铝合金微观组织及残余应力的影响[J]. 激光与光电子学进展, 2018, 55(1): 011413

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF