首页 > 论文 > 激光与光电子学进展 > 55卷 > 1期(pp:11403--1)

钛及钛合金激光选区熔化技术的研究进展

Research Progress on Technology of Selective Laser Melting of Titanium and Titanium Alloys

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

激光选区熔化(SLM)作为一种直接制造金属构件的增材制造技术, 可实现复杂结构件的高精度制造。介绍了SLM技术的发展现状及原理, 从材料体系、成形工艺、显微组织及力学性能方面论述了国内外钛及钛合金SLM技术的研究及应用现状, 总结了SLM技术加工钛及钛合金过程中存在的问题,及对其未来的发展趋势进行了展望。

Abstract

As an additive manufacturing technology to fabricate metallic components directly, the selective laser melting (SLM) can be used to fabricate complex structures with a high precision. The development status and principle of SLM technology are introduced, and the research and application status of SLM technology of titanium and titanium alloys at home and abroad are discussed from several aspects, which include material systems, forming processes, microstructures and mechanical properties. Furthermore, the problems and future trend of SLM technology for titanium and titanium alloys are summarized and prospected, respectively.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TG146

DOI:10.3788/lop55.011403

所属栏目:“激光增材制造技术”专题

基金项目:国家重点研发计划专项项目(2016YFB1100400)、装备预研教育部联合基金(6141A02022109)、中央高校基本科研业务费专项

收稿日期:2017-08-15

修改稿日期:2017-09-17

网络出版日期:--

作者单位    点击查看

李俊峰:西安交通大学机械制造系统工程国家重点实验室, 陕西 西安 710049
魏正英:西安交通大学机械制造系统工程国家重点实验室, 陕西 西安 710049
卢秉恒:西安交通大学机械制造系统工程国家重点实验室, 陕西 西安 710049

联系人作者:魏正英(zywei@mail.xjtu.edu.cn)

备注:李俊峰(1992-), 男, 博士研究生, 主要从事金属增材制造方面的研究。E-mail: xjljf2016@163.com

【1】Leyens C, Peters M. Titanium and titanium alloys:Fundamentals and applications[M]. New York: John Wiley & Sons, 2003: 3.

【2】Fu Y Y, Song Y Q, Hui S X, et al. Progress in research and application of titanium alloys used in aeronautical field[J]. Chinese Journal of Rare Metals, 2006, 30(6): 850-856.
付艳艳, 宋月清, 惠松骁, 等. 航空用钛合金的研究与应用进展[J]. 稀有金属, 2006, 30(6): 850-856.

【3】Li L Q, Wang J D, Wu C C, et al. Temperature field of molten pool and microstructure property in laser melting depositions of Ti6Al4V[J]. Chinese Journal of Lasers, 2017, 44(3): 0302009.
李俐群, 王建东, 吴潮潮, 等. Ti6Al4V激光熔化沉积熔池温度场与微观组织特性[J]. 中国激光, 2017, 44(3): 0302009.

【4】Wang X, Zhou J Z, Huang S, et al. Effect of laser peening on hydrogen embrittlement resistance of TC4 titanium alloys[J]. Acta Optica Sinica, 2017, 37(9): 0914006.
王祥, 周建忠, 黄舒, 等. 激光喷丸对TC4钛合金抗氢脆性能的影响[J]. 光学学报, 2017, 37(9): 0914006.

【5】Zhao Y Q, Chen Y N, Zhang X M, et al. Phase transformation and heat treatment of titanium alloys[M]. Changsha: Zhongnan University Press, 2012.
赵永庆, 陈永楠, 张学敏, 等. 钛合金相变及热处理[M]. 长沙: 中南大学出版社, 2012.

【6】Zhu Z S, Recent research and development of titanium alloys for aviation application in China[J]. Journal of Aeronautical Materials, 2014, 34(4): 44-50.
朱知寿. 我国航空用钛合金技术研究现状及发展[J]. 航空材料学报, 2014, 34(4): 44-50.

【7】Li F C, Song Z M, Yang D J. Research on titanium alloy machining technology[J]. New Technology & New Process, 2010, 5: 66-69.
李富长, 宋祖铭, 杨典军. 钛合金加工工艺技术研究[J]. 新技术新工艺, 2010, 5: 66-69.

【8】Gong S L, Suo H B, Li H X. Development and application of metal additive manufacturing technology[J]. Aeronautical Manufacturing Technology, 2013, 433(13): 66-71.
巩水利, 锁红波, 李怀学. 金属增材制造技术在航空领域的发展与应用[J]. 航空制造技术, 2013, 433(13): 66-71.

【9】Wang H M. High-performance metal component manufacturing technology opens a new chapter in national defense[J]. Defense Manufacturing Technology, 2013, 3: 5-7.
王华明. 高性能金属构件增材制造技术开启国防制造新篇章[J]. 国防制造技术, 2013, 3: 5-7.

【10】Deng X H, Yang Z J. Current situation and prospect of titanium alloy additive manufacturing technology[J]. Development and Application of Materials, 2014, 29(5): 113-120.
邓贤辉, 杨治军. 钛合金增材制造技术研究现状及展望[J]. 材料开发与应用, 2014, 29(5): 113-120.

【11】Li J, Lin X, Qian Y H, et al. Study on microstructure and property of laser solid forming TC4 titanium alloy[J]. Chinese Journal of Lasers, 2014, 41(11): 1103010.
李静, 林鑫, 钱远宏, 等. 激光立体成形TC4钛合金组织和力学性能研究[J]. 中国激光, 2014, 41(11): 1103010.

【12】Li H X, Gong S L, Sun F, et al. Development and application of laser additive manufacturing for metal component[J]. Aeronautical Manufacturing Technology, 2012, 416(20): 26-31.
李怀学, 巩水利, 孙帆, 等. 金属零件激光增材制造技术的发展及应用[J]. 航空制造技术, 2012, 416(20): 26-31.

【13】Pan A Q, Zhang H, Wang Z M. Molten pool microstructure of Ni-based single crystal superalloys fabricated by selective laser melting[J]. Laser & Optoelectronics Progress, 2017, 54(7): 041702.
潘爱琼, 张辉, 王泽敏. 选区激光熔化镍基单晶高温合金的熔池显微组织[J]. 激光与光电子学进展, 2017, 54(7): 041702.

【14】Hou H P, Liang Y C, He Y L, et al. Microstructure evolution and tensile property of Hastelloy-X alloys produced by selective laser melting[J]. Chinese Journal of Lasers, 2017, 44(2): 0202007.
侯慧鹏, 梁永朝, 何艳丽, 等. 选区激光熔化Hastelloy-X合金组织演变及拉伸性能[J]. 中国激光, 2017, 44(2): 0202007.

【15】Yang Q Z, Wei Y P, Gao P, et al. Research progress of metal additive manufacturing technologies and related materials[J]. Materials Review, 2016(s1): 107-111.
杨全占, 魏彦鹏, 高鹏, 等. 金属增材制造技术及其专用材料研究进展[J]. 材料导报, 2016(s1): 107-111.

【16】Edwards P, O′Conner A, Ramulu M. Electron beam additive manufacturing of titanium components:Properties and performance[J]. Journal of Manufacturing Science and Engineering, 2013, 135(6): 061016.

【17】Baufeld B, van der Biest O, Gault R. Additive manufacturing of Ti-6Al-4V components by shaped metal deposition:Microstructure and mechanical properties[J]. Materials & Design, 2010, 31(1): S106-S111.

【18】Wang X, Wang D S, Gao X S, et al. Research status and development in laser additive manufacturing of light alloy components[J]. Applied Laser, 2016, 36(4): 478-483.
王霄, 王东生, 高雪松, 等. 轻合金构件激光增材制造研究现状及其发展[J]. 应用激光, 2016, 36(4): 478-483.

【19】Wang H M, Zhang S Q, Tang H B, et al. Development of laser rapid prototyping technology for large titanium alloy structures[J]. Aviation Precision Manufacturing Technology, 2008, 44(6): 28-30.
王华明, 张述泉, 汤海波, 等. 大型钛合金结构激光快速成形技术研究进展[J]. 航空精密制造技术, 2008, 44(6): 28-30.

【20】Feng Y F. Northwestern polytechnical university made 3 meters titanium alloy parts of C919 aircraft with 3D printing[J]. Technology Research, 2013, 1: 24.
冯颖芳. 西工大用3D打印制造3米长C919飞机钛合金部件[J]. 工艺技术研究, 2013, 1: 24.

【21】Dong P, Li Z H, Yan Z Y, et al. Research status of selective laser melting of aluminum alloys[J]. Applied Laser, 2015, 5: 607-611.
董鹏, 李忠华, 严振宇, 等. 铝合金激光选区熔化成形技术研究现状[J]. 应用激光, 2015, 5: 607-611.

【22】Dong P, Chen J L. Current status of selective laser melting for aerospace applications abroad[J]. Aeronautical Manufacturing Technology, 2014, 1: 1-5.
董鹏, 陈济轮. 国外选区激光熔化成形技术在航空航天领域应用现状[J]. 航天制造技术, 2014, 1: 1-5.

【23】Yang Y Q, Wu W H, Lai K X, et al. Newest process of direct rapid prototyping of metal part by selective laser melting[J]. Aeronautical Manufacturing Technology, 2006, 2: 73-76.
杨永强, 吴伟辉, 来克娴, 等. 金属零件选区激光熔化直接快速成形工艺及最新进展[J]. 航空制造技术, 2006, 2: 73-76.

【24】Yin H, Bai P K, Liu B, et al. Present situation and development trend of selective laser melting technology for metal powder[J]. Hot Working Technology, 2010, 39(1): 140-144.
尹华, 白培康, 刘斌, 等. 金属粉末选区激光熔化技术的研究现状及其发展趋势[J]. 热加工工艺, 2010, 39(1): 140-144.

【25】Gu D D, Shen Y F. Research status and technical prospect of rapid manufacturing of metallic part by selective laser melting[J]. Aeronautical Manufacturing Technology, 2012, 8: 32-37.
顾冬冬, 沈以赴. 基于选区激光融化的金属材料零件快速成形现状与技术展望[J]. 航空制造技术, 2012, 8: 32-37.

【26】Dang X A, Zhang X B, Yang L J, et al. Researching forming property of titanium powder in selective laser melting[J]. Journal of Shaanxi University Science & Technology, 2014, 1: 68-73.
党新安, 张晓博, 杨立军, 等. 钛粉激光选区熔化成型特性的研究[J]. 陕西科技大学学报, 2014, 1: 68-73.

【27】Abe F, Santos E C, Kitamura Y, et al. Influence of forming conditions on the titanium model in rapid prototyping with the selective laser melting process[J]. Journal of Mechanical Engineering Science, 2003, 217(1): 119-126.

【28】Gu D, Hagedorn Y C, Meiners W, et al. Densification behavior, microstructure evolution, and wear performance of selective laser melting processed commercially pure titanium[J]. Acta Materialia, 2012, 60(9): 3849-3860.

【29】Attar H, Calin M, Zhang L C, et al. Manufacture by selective laser melting and mechanical behavior of commercially pure titanium[J]. Materials Science and Engineering, 2014, 593(2): 170-177.

【30】Li X P, Humbeeck J V, Kruth J P. Selective laser melting of weak-textured commercially pure titanium with high strength and ductility: A study from laser power perspective[J]. Mater& Design, 2017, 116: 352-358.

【31】Kang N, Yuan H, Coddet P, et al. On the texture, phase and tensile properties of commercially pure Ti produced via selective laser melting assisted by static magnetic field[J]. Mater Science and Engineering, 2017, 70: 405-407.

【32】Barbas A, Bonnet A S, Lipinski P, et al. Development and mechanical characterization of porous titanium bone substitutes[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2012, 9(3): 34.

【33】Liang Y R, Wu Y J. Production technology of titanium and its alloy spherical powders used in 3D printing[J]. World Nonferrous Metals, 2016, 12: 150-151.
梁永仁, 吴引江. 3D打印用钛及钛合金球形粉末制备技术[J]. 世界有色金属, 2016, 12: 150-151.

【34】Seyda V, Herzog D, Emmelmann C. Relationship between powder characteristics and part properties in laser beam melting of Ti-6Al-4V, and implications on quality[J]. Journal of Laser Applications, 2017, 29(2): 022311.

【35】Yao N N, Peng X H. The preparation method of metal powder for 3D printing[J]. Sichuan Nonferrous Metals, 2013, 4: 48-51.
姚妮娜, 彭雄厚. 3D打印金属粉末的制备方法[J]. 四川有色金属, 2013, 4: 48-51.

【36】Zhao X H, Zuo Z B, Han Z Y, et al. A review on powder titanium alloy 3D printing technology[J]. Materials Review, 2016, 30(23): 120-126.
赵霄昊, 左振博, 韩志宇, 等. 粉末钛合金3D打印技术研究进展[J]. 材料导报, 2016, 30(23): 120-126.

【37】Yao W J. Iluka additional investment in the low-cost development of titanium metal powders[J]. China Titanium Industry, 2016, 2: 50.
姚文静. Iluka追加投资研发低成本钛金属粉末[J]. 中国钛业, 2016, 2: 50.

【38】Gong H, Gu H, Zeng K, et al. Melt pool characterization for selective laser melting of Ti-6Al-4V pre-alloyed powder[C]. Solid Freeform Fabrication Symposium, 2014: 256-267.

【39】Gong H J, Rafi K, Gu H F, et al. Analysis of defect generation in Ti-6Al-4V parts made using powder bed fusion additive manufacturing processes[J]. Additive Manufacturing, 2014, 1/2/3/4: 87-98.

【40】Sun J F, Yang Y Q, Yang Z. Study on surface roughness of selective laser melting Ti6Al4V based on powder characteristics[J]. Chinese Journal of Lasers, 2016, 43(7): 0702004.
孙健峰, 杨永强, 杨洲. 基于粉末特性的选区激光熔化Ti6Al4V表面粗糙度研究[J]. 中国激光, 2016, 43(7): 0702004.

【41】Sato Y, Tsukamoto M, Yamashita Y. Surface morphology of Ti-6Al-4V plate fabricated by vacuum selective laser melting[J]. Applied Physics B, 2015, 119(3): 545-549.

【42】Simonelli M, Tuck C, Aboulkhair N T, et al. A study on the laser spatter and the oxidation reactions during selective laser melting of 316L stainless steel, Al-Si10-Mg, and Ti-6Al-4V[J]. Metallurgical & Materials Transactions A, 2015, 46(9): 3842-3851.

【43】Sato Y, Tsukamoto M, Yamashita Y, et al. Effect on beam profile of Ti alloy plate fabrication from powder by sputter-less selective laser melting[C]. SPIE, 2017, 10095: 100950Z.

【44】Kasperovich G, Haubrich J, Gussone J, et al. Correlation between porosity and processing parameters in TiAl6V4 produced by selective laser melting[J]. Materials & Design, 2016, 105: 160-170.

【45】Song B, Dong S J, Liao H L, et al. Process parameter selection for selective laser melting of Ti6Al4V based on temperature distribution simulation and experimental sintering[J]. The International Journal of Advanced Manufacturing Technology, 2012, 61(9/10/11/12): 967-974.

【46】Sun J F, Yang Y Q, Wang D. Parametric optimization of selective laser melting for forming Ti6Al4V samples by Taguchi method[J]. Optics & Laser Technology, 2013, 49(7): 118-124.

【47】Ye Z H. The personalized design and process research of selective laser melting manufacturing of Ti6Al4V tibial implant[D]. Guangzhou: South China University of Technology, 2014.
叶梓恒. Ti6Al4V胫骨植入体个性化设计及其激光选区熔化制造工艺研究[D]. 广州: 华南理工大学, 2014.

【48】Wang X L. Study on process optimization and property of titanium alloy manufactured by selective laser melting[D]. Guangzhou: South China University of Technology, 2016.
王小龙. 钛合金激光选区熔化工艺优化与性能研究[D]. 广州: 华南理工大学, 2016.

【49】Wang J H, Bai P K. Study on process parameters on surface quality of Ti6Al4V by selective laser melting[J]. Hot Working Technology, 2013, 42(15): 13-15.
王建宏, 白培康. Ti6Al4V粉末选区激光熔化单层扫描工艺研究[J]. 热加工工艺, 2013, 42(15): 13-15.

【50】Zhang S. Research on the forming processes and properties in selective laser melting of medical alloy powders[D]. Wuhan: Huang Zhong University of Science and Technology, 2014.
张升. 医用合金粉末激光选区熔化成形工艺与性能研究[D]. 武汉: 华中科技大学, 2014.

【51】Shi X, Ma S, Liu C, et al. Performance of high layer thickness in selective laser melting of Ti6Al4V[J]. Materials, 2016, 9(12): 975.

【52】Simonelli M, Tse Y Y, Tuck C. Microstructure of Ti-6Al-4V produced by selective laser melting[J]. Journal of Physics, 2012, 371(1): 012084.

【53】Thijs L, Verhaeghe F, Craeghs T, et al. A study of the microstructural evolution during selective laser melting of Ti-6Al-4V[J]. Acta Mater, 2010, 58(9): 3303-3312.

【54】Do D K, Li P F. The effect of laser energy input on the microstructure, physical and mechanical properties of Ti-6Al-4V alloys by selective laser melting[J]. Virtual and Physical Prototyping, 2016, 11(1): 41-47.

【55】Yang J J, Yu H C, Yin J, et al. Formation and control of martensite in Ti-6Al-4V alloy produced by selective laser melting[J]. Materials & Design, 2016, 108: 308-318.

【56】Simonelli M, Tse Y Y, Tuck C.Further understanding of Ti-6Al-4V selective laser melting using texture analysis[C]// Proceedings of 23rd Annual International Solid Freeform Fabrication Symposium, 2012:480-491.

【57】Han J, Yang J J, Yu H C, et al. Microstructure and mechanical property of selective laser melted Ti6Al4V dependence on laser energy density[J]. Rapid Prototyping Journal, 2017, 23(2): 217-226.

【58】Dutta B, Froes F H S. The additive manufacturing (AM) of titanium alloys[J]. Metal Powder Report, 2017, 72(2): 96-106.

【59】Simonelli M, Tse Y Y, Tuck C. On the texture formation of selective laser melted Ti-6Al-4V[J]. Metallurgical and Materials Transactions A, 2014, 45(6): 2863-2872.

【60】Barriobero V P, Gussone J, Haubrich J, et al. Inducing stable α+β microstructures during selective laser melting of Ti-6Al-4V using intensified intrinsic heat treatments[J]. Materials, 2017, 10(3): 268.

【61】Facchini L, Magalini E, Robotti P, et al. Ductility of a Ti-6Al-4V alloy produced by selective laser melting of prealloyed powders[J]. Rapid Prototyping Journal, 2010, 16(6): 450-459.

【62】Ali H, Ma L, Ghadbeigi H, et al. In-situ residual stress reduction, martensitic decomposition and mechanical properties enhancement through high temperature powder bed pre-heating of selective laser melted Ti6Al4V[J]. Materials Science & Engineering , 2017, 695: 211-220.

【63】Xu W, Lui E W, Pateras A, et al. In situ tailoring microstructure in additively manufactured Ti-6Al-4V for superior mechanical performance[J]. Acta Mater, 2017, 125: 390-400.

【64】Xu W, Sun S, Elambasseril J, et al. Ti-6Al-4V additively manufactured by selective laser melting with superior mechanical properties[J]. JOM, 2015, 67(3): 668-673.

【65】Vrancken B, Thijs L, Kruth J P, et al. Heat treatment of Ti6Al4V produced by selective laser melting: Microstructure and mechanical properties[J]. Journal of Alloys and Compounds, 2012, 541: 177-185.

【66】Khorasani A, Gibson I, Goldberg M, et al. On the role of different annealing heat treatments on mechanical properties and microstructure of selective laser melted and conventional wrought Ti-6Al-4V[J]. Rapid Prototyping Journal, 2017, 23(2): 295-304.

【67】Kasperovich G, Hausmann J. Improvement of fatigue resistance and ductility of TiAl6V4 processed by selective laser melting[J]. Journal of Materials Processing Technology, 2015, 220: 202-214.

【68】Liang X K, Dong P, Chen J L, et al. Microstructure and mechanical properties of selective laser melting Ti6Al4V alloy[J]. Applied Laser, 2014, 34(2): 101-104.
梁晓康, 董鹏, 陈济轮, 等. 激光选区熔化成形Ti-6Al-4V钛合金的显微组织及性能[J]. 应用激光, 2014, 34(2): 101-104.

【69】Cain V, Thijs L, Humbeeck J V, et al. Crack propagation and fracture toughness of Ti6Al4V alloy produced by selective laser melting[J]. Additive Manufacturing, 2015, 5: 68-76.

【70】Benedetti M, Torresani E, Leoni M, et al. The effect of post-sintering treatments on the fatigue and biological behavior of Ti-6Al-4V ELI parts made by selective laser melting[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 71: 295.

【71】Simonelli M, Tse Y Y, Tuck C. Effect of the build orientation on the mechanical properties and fracture modes of SLM Ti-6Al-4V[J]. Materials Science & Engineering, 2014, 616: 1-11.

【72】Zhang K, Liu T T, Zhang C D, et al. Study on deformation behavior in selective laser melting based on the analysis of the melt pool data[J]. Chinese Journal of Lasers, 2015, 42(9): 0903007.
张凯, 刘婷婷, 张长东, 等. 基于熔池数据分析的激光选区熔化成形件翘曲变形行为研究[J]. 中国激光, 2015, 42(9): 0903007.

【73】Casavola C, Campanelli S L, Pappalettere C. Preliminary investigation on distribution of residual stress generated by the selective laser melting process[J]. The Journal of Strain Analysis for Engineering Design, 2009, 44(1): 93-104.

【74】Liu Y, Yang Y, Wang D. A study on the residual stress during selective laser melting (SLM) of metallic powder[J]. The International Journal of Advanced Manufacturing Technology, 2016, 87(1/2/3/4): 647-656.

【75】Megahed M, Mindt H W, N’Dri N, et al. Metal additive-manufacturing process and residual stress modeling[J]. Integrating Materials & Manufacturing Innovation, 2016, 5(1): 4.

【76】Mercelis P, Kruth J P. Residual stresses in selective laser sintering and selective laser melting[J]. Rapid Prototyping Journal, 2013, 12(5): 254-265.

【77】Vrancken B, Cain V, Knutsen R, et al. Residual stress via the contour method in compact tension specimens produced via selective laser melting[J]. Scripta Materialia, 2014, 87: 29-32.

【78】Yadroitsev I, Yadroitsava I. Evaluation of residual stress in stainless steel 316L and Ti6Al4V samples produced by selective laser melting[J]. Virtual & Physical Prototyping, 2015, 10(2): 1-10.

【79】Parry L, Ashcroft I A, Wildman R D. Understanding the effect of laser scan strategy on residual stress in selective laser melting through thermo-mechanical simulation[J]. Additive Manufacturing, 2016, 12: 1-15.

【80】Mohanty S, Hattel J H. Reducing residual stresses and deformations in selective laser melting through multilevel multiscale optimization of cellular scanning strategy[C]. SPIE, 2016, 9738: 97380Z.

【81】Deng S S, Yang Y Q, Li Y, et al. Planning of area-partition scanning path and its effect on residual stress of SLM molding parts[J]. Chinese Journal of Lasers, 2016, 43(12): 1202003.
邓诗诗, 杨永强, 李阳, 等. 分区扫描路径规划及其对SLM成型件残余应力分布的影响[J]. 中国激光, 2016, 43(12): 1202003.

【82】Zhang S, Gui R Z, Wei Q S, et al. Cracking behavior and formation mechanism of TC4 alloy fabricated by selective laser melting[J]. Journal of Mechanical Engineering, 2013, 49(23): 21-27.
张升, 桂睿智, 魏青松, 等. 选择性激光熔化成形TC4钛合金开裂行为及其机理研究[J]. 机械工程学报, 2013, 49(23): 21-27.

【83】Mishurova T, Cabeza S, Artzt K, et al. An assessment of subsurface residual stress analysis in SLM Ti-6Al-4V[J]. Materials, 2017, 10(4): 348.

【84】Vastola G, Zhang G, Pei Q X, et al. Controlling of residual stress in additive manufacturing of Ti6Al4V by finite element modeling[J]. Additive Manufacturing, 2016, 12: 231-239.

【85】Rotaru H, Armencea G, Spirchez D, et al. In vivo behavior of surface modified Ti6Al7Nb alloys used in selective laser melting for custom-made implants. A preliminary study[J]. Romanian Journal of Morphology Embryology, 2013, 54(3): 791-796.

【86】yczkowska E, Szymczyk P, Dybaa B, et al. Chemical polishing of scaffolds made of Ti-6Al-7Nb alloy by additive manufacturing[J]. Archives of Civil and Mechanical Engineering, 2014, 14(4): 586-594.

【87】Marcu T, Todea M, Gligor I, et al. Effect of surface conditioning on the flowability of Ti6Al7Nb powder for selective laser melting applications[J]. Applied Surface Science, 2012, 258(7): 3276-3282.

【88】Marcu T, Menapace C, Girardini L, et al. Selective laser melting of Ti6Al7Nb with hydroxyapatite addition[J]. Rapid Prototyping Journal, 2014, 20(4): 301-310.

【89】Chlebus E, Kunicka B, Kurzynowski T, et al. Microstructure and mechanical behavior of Ti-6Al-7Nb alloy produced by selective laser melting[J]. Materials Characterization, 2011, 62(5): 488-495.

【90】Sercombe T, Jones N, Day R, et al. Heat treatment of Ti-6Al-7Nb components produced by selective laser melting[J]. Rapid Prototyping Journal, 2008, 14(5): 300-304.

【91】Bolzoni L, Ruiz-Navas E M, Gordo E. Influence of HIP parameters on the microstructure and mechanical properties of elemental titanium and Ti-6Al-7Nb alloy[C]. European Powder Metallurgy, 2012.

【92】Zhang L C, Klemm D, Eckert J, et al. Manufacture by selective laser melting and mechanical behavior of a biomedical Ti-24Nb-4Zr-8Sn alloy[J]. Scripta Materialia, 2011, 65(1): 21-24.

【93】Zhang L C, Sercombe T B. Selective laser melting of low-modulus biomedical Ti-24Nb-4Zr-8Sn alloy: Effect of laser point distance[J]. Key Engineering Materials, 2012, 520: 226-233.

【94】Liu Y J, Li X P, Zhang L C, et al. Processing and properties of topologically optimized biomedical Ti-24Nb-4Zr-8Sn scaffolds manufactured by selective laser melting[J]. Materials Science and Engineering, 2015, 642: 268-278.

【95】Dang X. Overview of development of patent technology in titanium alloy field in China[J]. Advanced Materials Industry, 2017, 3: 30-34.
党兴. 我国钛铝合金领域专利技术发展综述[J]. 新材料产业, 2017, 3: 30-34.

【96】Shi X, Ma S, Liu C, et al. Parameter optimization for Ti-47Al-2Cr-2Nb in selective laser melting based on geometric characteristics of single scan tracks[J]. Optics & Laser Technology, 2017, 90: 71-79.

【97】Li W, Liu J, Zhou Y, et al. Effect of substrate preheating on the texture, phase and nanohardness of a Ti-45Al-2Cr-5Nb alloy processed by selective laser melting[J]. Scripta Materials, 2016, 118: 13-18.

【98】Li W, Liu J, Wen S, et al. Crystal orientation, crystallographic texture and phase evolution in the Ti-45Al-2Cr-5Nb alloy processed by selective laser melting[J]. Materials Characterization, 2016, 113: 125-133.

【99】Li W, Liu J, Zhou Y, et al. Effect of laser scanning speed on a Ti-45Al-2Cr-5Nb alloy processed by selective laser melting: Microstructure, phase and mechanical properties[J]. Journal of Alloys and Compounds, 2016, 688: 626-636.

【100】Li W, Liu J, Zhou Y, et al. Texture evolution, phase transformation mechanism and nanohardness of selective laser melted Ti-45Al-2Cr-5Nb alloy during multi-step heat treatment process[J]. Intermetallics, 2017, 85: 130-138.

【101】Li W, Yang Y, Liu J, et al. Enhanced nanohardness and new insights into texture evolution and phase transformation of TiAl/TiB2 in-situ metal matrix composites prepared via selective laser melting[J]. Acta Materialia, 2017, 136: 90-104.

【102】Krakhmalev P, Yadroitsev I. Microstructure and properties of intermetallic composite coatings fabricated by selective laser melting of Ti-SiC powder mixtures[J]. Intermetallics, 2014, 46: 147-155.

【103】Attar H, Ehtemam-Haghighi S, Kent D, et al. Nanoindentation and wear properties of Ti and Ti-TiB composite materials produced by selective laser melting[J]. Materials Science and Engineering, 2017, 688: 20-26.

【104】Attar H, Lber L, Funk A, et al. Mechanical behavior of porous commercially pure Ti and Ti-TiB composite materials manufactured by selective laser melting[J]. Materials Science and Engineering, 2015, 625: 350-356.

【105】Attar H, Prashanth K G, Zhang L C, et al. Effect of powder particle shape on the properties of in situ Ti-TiB composite materials produced by selective laser melting[J]. Journal of Materials Science & Technology, 2015, 31(10): 1001-1005.

【106】Fischer M, Joguet D, Robin G, et al. In situ elaboration of a binary Ti-26Nb alloy by selective laser melting of elemental titanium and niobium mixed powders[J]. Materials Science and Engineering, 2016, 62(2): 852-859.

【107】Speirs M, Humbeeck J V, Schrooten J, et al. The effect of pore geometry on the mechanical properties of selective laser melted Ti-13Nb-13Zr scaffolds[J]. Procedia CIRP, 2013, 5: 79-82.

【108】Grigoriev A, Polozov I, Sufiiarov V, et al. In-situ synthesis of Ti2AlNb-based intermetallic alloy by selective laser melting[J]. Journal of Alloys and Compounds, 2017, 704: 434-442.

【109】Sharkeev Y P, Eroshenko A Y, Kovalevskaya Z G, et al. Structural and phase state of Ti-Nb alloy at selective laser melting of the composite powder[J]. Russian Physics Journal, 2016, 59(3): 1-5.

【110】Wang Q, Han C J, Choma T, et al. Effect of Nb content on microstructure, property and in vitro apatite-forming capability of Ti-Nb alloys fabricated via selective laser melting[J]. Materials & Design, 2017, 126: 268-277.

【111】Sing S L, Wang S, Agarwala S, et al. Fabrication of titanium based biphasic scaffold using selective laser melting and collagen immersion[J]. International Journal of Bioprinting, 2017, 3(1): 1-7.

【112】Wang D, Wang Y, Wu S, et al. Customized a Ti6Al4V bone plate for complex pelvic fracture by selective laser melting[J]. Materials, 2017, 10(1): 10010035.

【113】Pan C T, Lin C H, Huang Y S, et al. Design of interbody fusion cages of Ti6Al4V with gradient porosity using a selective laser melting process for spinal fusion arthroplasty[J]. Journal of Laser Micro/Nanoengineering, 2017, 12(1): 34-44.

【114】Cheng L W, Cheng C W, Chung K C, et al. Sound absorption of metallic sound absorbers fabricated via the selective laser melting process[J]. Applied Physics A, 2017, 123(1): 37-37.

【115】Campanelli S L, Contuzzi N, Ludovico A D, et al. Manufacturing and characterization of Ti6Al4V lattice components manufactured by selective laser melting[J]. Materials, 2014, 7(6): 4803-4822.

【116】Zhao Z G, Bo L, Li L, et al. Status and progress of selective laser melting forming technology[J]. Aeronautical Manufacturing Technology, 2014, 463(19): 46-49.
赵志国, 柏林, 李黎, 等. 激光选区熔化成形技术的发展现状及研究进展[J]. 航空制造技术, 2014, 463(19): 46-49.

【117】Ding H Y, Sun Z G, Chu M Q, et al. Development and application of selective laser melting technology in civil aircraft[J]. Aeronautical Manufacturing Technology, 2015, 473(4): 102-104.
丁红瑜, 孙中刚, 初铭强, 等. 选区激光熔化技术发展现状及在民用飞机上的应用[J]. 航空制造技术, 2015, 473(4): 102-104.

引用该论文

Li Junfeng,Wei Zhengying,Lu Bingheng. Research Progress on Technology of Selective Laser Melting of Titanium and Titanium Alloys[J]. Laser & Optoelectronics Progress, 2018, 55(1): 011403

李俊峰,魏正英,卢秉恒. 钛及钛合金激光选区熔化技术的研究进展[J]. 激光与光电子学进展, 2018, 55(1): 011403

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF