首页 > 论文 > 光学学报 > 38卷 > 1期(pp:105004--1)

硒化锌衬底表面仿生宽带增透微结构的设计及制作

Design and Fabrication of Bionic Broadband Antireflective Microstructure on Zinc Selenide

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

采用时域有限差分法研究了硒化锌基底的抛物线型周期阵列仿生微结构的光学性质, 重点分析了微结构阵列的周期、高度、占空比和形状轮廓等对反射率的影响, 得到了有较好增透效果的结构参数。根据模拟参数进行两次干涉曝光制备掩模, 采用反应离子刻蚀技术制备周期阵列微结构。通过场发射扫描电子显微镜对微结构的表面形貌进行表征, 并采用傅里叶变换红外光谱仪在中红外波段分别对双面抛光、单面微结构的硒化锌片进行透过率测试。结果表明: 单面微结构样品在2~5 μm范围内的整体平均透过率比双面抛光硒化锌基片提高了10%, 在2.3 μm处的最大透过率为82%。

Abstract

The optical properties of parabolic cone array microstructure of zinc selenide are researched by finite-difference time-domain method. The effects of microstructure parameters, such as period, height, filling factor, and profile shape on the reflectivity are discussed. Structural parameters corresponding to good antireflection effect are obtained. The parabolic cone period microstructure is prepared by twice interference lithography and reactive ion etching technology according to the simulated results. The surface morphology is analyzed by field emission scanning electron microscopy, and the transmittances of the zinc selenide with double-sides polished and single-side microstructures are respectively measured with the utilization of the Fourier transform infrared spectrometer. The measured results illustrate that the average transmittance of samples with single-sided microstructure is 10% higher than that of double-sided polished zinc selenide at 2-5 μm wavelengths, and the transmittance reaches a maximum value of 82% at 2.3 μm.

投稿润色
补充资料

中图分类号:TN213;O485

DOI:10.3788/aos201838.0105004

所属栏目:衍射与光栅

基金项目:国家自然科学基金项目(61405225)

收稿日期:2017-07-21

修改稿日期:2017-08-20

网络出版日期:--

作者单位    点击查看

费亮:上海大学材料科学与工程学院, 上海 200444中国科学院上海光学精密机械研究所中科院强激光材料重点实验室, 上海 201800
崔云:中国科学院上海光学精密机械研究所中科院强激光材料重点实验室, 上海 201800
万冬云:上海大学材料科学与工程学院, 上海 200444
陈鹏:中国科学院上海光学精密机械研究所中科院强激光材料重点实验室, 上海 201800中国科学院大学, 北京 100049
徐姣:中国科学院上海光学精密机械研究所中科院强激光材料重点实验室, 上海 201800中国科学院大学, 北京 100049

联系人作者:费亮(liangf@shu.edu.cn)

备注:费亮(1993-), 男, 硕士研究生, 主要从事红外微结构方面的研究。E-mail: liangf@shu.edu.cn

【1】Karaganov V, Law M, Kaesler M, et al. Engineering development of a directed IR countermeasure laser[C]. SPIE, 2004, 5615: 49.

【2】Qu Y, Kang Z H, Wang T J, et al. The detection of carbon monoxide by the second harmonic generation of CO2 laser[J]. Laser Physics Letters, 2006, 4(3): 238.

【3】Tang G J, Xie J J, Zhang L M, et al. Recent progress in mid-infrared laser technology[J]. Chinese Optics, 2013, 6(4): 501-512.
谭改娟, 谢冀江, 张来明, 等. 中波红外激光技术最新进展[J]. 中国光学, 2013, 6(4): 501-512.

【4】Ke C J, Kong X Y, Wang R, et al. Research progress on mid-IR Fe∶ZnSe laser technology[J]. Infrared and Laser Engineering, 2016, 45(3): 0305002.
柯常军, 孔心怡, 王 然, 等. 中红外Fe∶ZnSe激光技术最新研究进展[J]. 红外与激光工程, 2016, 45(3): 0305002.

【5】Li H, Yi K, Cui Y, et al. Substrate effects on the water absorption of infrared SiO2 film[J]. Chinese Journal of Lasers, 2014, 41(7): 0707001.
李豪, 易葵, 崔云, 等. 不同基底上SiO2薄膜红外波段的水吸收特性[J]. 中国激光, 2014, 41(7): 0707001.

【6】Ko Y H, Yu J S. Design of hemi-urchin shaped ZnO nanostructures for broadband and wide-angle antireflection coatings[J]. Optics Express, 2011, 19(1): 297-305.

【7】Yao J K, Shao J D, He H B, et al. Effects of annealing on laser-induced damage threshold of TiO2/SiO2 high reflectors[J]. Applied Surface Science, 2007, 253(22): 8911-8914.

【8】Clapham P B, Hutley M C. Reduction of lens reflexion by the “Moth Eye” principle[J]. Nature, 1973, 244(5414): 281-282.

【9】Huang Y F, Chattopadhyay S, Jen Y J, et al. Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures[J]. Nature Nanotechnology, 2007, 2(12): 770-774.

【10】Park H, Shin D, Kang G, et al. Broadband optical antireflection enhancement by integrating antireflective nanoislands with silicon nanoconical-frustum arrays[J]. Advanced Materials, 2011, 23(48): 5796-5800.

【11】Hobbs D S, MacLeod B D, Sabatino E, et al. Laser damage resistant anti-reflection microstructures for mid-infrared metal-ion doped ZnSe gain media[C]. SPIE, 2012, 8530: 85300P.

【12】McDaniel S, Hobbs D, MacLeod B, et al. Cr∶ZnSe laser incorporating anti-reflection microstructures exhibiting low-loss, damage-resistant lasing at near quantum limit efficiency[J]. Optical Materials Express, 2014, 4(11): 2225-2232.

【13】Sanghera J, Florea C, Busse L, et al. Reduced Fresnel losses in chalcogenide fibers by using anti-reflective surface structures on fiber end faces[J]. Optics Express, 2010, 18(25): 26760-26768.

【14】Zollars B, Savoy S, Xue Q Z, et al. Performance measurements of infrared windows with surface structures providing broadband, wide-angle, antireflective properties[C]. SPIE, 2013, 8708: 87080Q.

【15】Shang P, Xiong S M. Design and error analysis of sub-wavelength antireflective micro-structure on surface of ZnSe substrate[J]. Chinese Journal of Lasers, 2014, 41(1): 0116004.
尚鹏, 熊胜明. ZnSe衬底表面亚波长增透结构的设计及误差分析[J]. 中国激光, 2014, 41(1): 0116004.

【16】Gao Y F, Zhao Q H, Xu X F, et al. Research on reflection properties of silicon based solar cells with parabolic cone array structure[J]. Chinese Journal of Lasers, 2015, 42(8): 0808004.
高永锋, 赵琼华, 许孝芳, 等. 光伏电池表面抛物锥阵列微结构的反射特性研究[J]. 中国激光, 2015, 42(8): 0808004.

【17】Dong T T, Fu Y G, Chen C, et al. Study on bionic moth-eye antireflective cylindrical microstructure on germanium substrate[J]. Acta Optica Sinica, 2016, 36(5): 0522004.
董亭亭, 付跃刚, 陈驰, 等. 锗衬底表面圆柱形仿生蛾眼抗反射微结构的研制[J]. 光学学报, 2016, 36(5): 0522004.

【18】Stavenga D G, Foletti S, Palasantzas G, et al. Light on the moth-eye corneal nipple array of butterflies[J]. Proceedings of the Royal Society of London B: Biological Sciences, 2006, 273(1587): 661-667.

【19】Lalanne P, Lemercier-Lalanne D. On the effective medium theory of subwavelength periodic structures[J]. Journal of Modern Optics, 1996, 43(10): 2063-2085.

【20】Yang Z Y, Zhu D Q, Zhao M, et al. The study of a nano-porous optical film with the finite difference time domain method[J]. Journal of Optics A, 2004, 6(6): 564-568.

【21】Katsidis C C, Siapkas D I. General transfer-matrix method for optical multilayer systems with coherent, partially coherent, and incoherent interference[J]. Applied Optics, 2002, 41(19): 3978-3987.

【22】Moharam M G, Gaylord T K, Grann E B, et al. Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings[J]. Journal of the Optical Society of America A, 1995, 12(5): 1068-1076.

【23】Isabella O, Solntsev S, Caratelli D, et al. 3-D optical modeling of thin-film silicon solar cells on diffraction gratings[J]. Progress in Photovoltaics: Research and Applications, 2013, 21(1): 94-108.

【24】Raguin D H, Morris G M. Antireflection structured surfaces for the infrared spectral region[J]. Applied Optics, 1993, 32(7): 1154-1167.

【25】Kurisu K, Hirai T, Ushiro T, et al. Beam-splitting ZnSe diffractive optical element[C]. SPIE, 2003, 4830: 313-318.

引用该论文

Fei Liang,Cui Yun,Wan Dongyun,Chen Peng,Xu Jiao. Design and Fabrication of Bionic Broadband Antireflective Microstructure on Zinc Selenide[J]. Acta Optica Sinica, 2018, 38(1): 0105004

费亮,崔云,万冬云,陈鹏,徐姣. 硒化锌衬底表面仿生宽带增透微结构的设计及制作[J]. 光学学报, 2018, 38(1): 0105004

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF