首页 > 论文 > 光学学报 > 38卷 > 1期(pp:106004--1)

基于EKF和LKF级联的频偏和相位估计联合方案

A Joint Frequency Offset and Phase Estimation Scheme Based on Cascaded EKF and LKF

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

提出基于级联扩展卡尔曼滤波与块状处理线性卡尔曼滤波的频偏和相位噪声协同处理方案。利用扩展卡尔曼滤波器对系统频偏进行初始估计, 利用块状线性卡尔曼滤波器实现频偏和相位噪声的精准估计。对最优数据块长度和调优参数Q的关系, 算法的线宽容忍性能、频偏估计范围以及频偏漂移追踪速度进行了详细的讨论和分析。结果表明, 该方案具有快速的载波估计收敛能力、较高的频偏和相位估计精度, 并且其频偏漂移追踪可高达320 MHz/μs。相比传统盲相位搜索方法, 该方案具备较高的频偏容忍度和较低的实现复杂度。最后实验研究正交相移键控(QPSK)光通信系统下的载波恢复性能, 同时给出不同光信噪比、块状数据长度下的载波频偏估计性能。

Abstract

A co-processing scheme of frequency offset and phase noise based on cascade extended Kalman filter (EKF) and block-processed linear Kalman filter (LKF) is proposed. The EKF is responsible for preliminary estimation of frequency offset. The LKF is responsible for tracking frequency offset and phase noise accurately. Relationship between the optimal block length and the tuning parameter Q, linewidth tolerance, frequency offset estimation range and frequency offset tracking speed of algorithm are discussed and analyzed in detail. The results show that the scheme has fast convergence performance, and can achieve high estimation accuracy of frequency offset and phase estimation. Moreover, the frequency offset drift can reach 320 MHz/μs. Compared with traditional blind phase search method, the scheme has high frequency offset tolerance and low implementation complexity. Finally, the carrier recovery performance for quadrature phase shift keying (QPSK) optical communication system is experimentally studied, and the carrier frequency offset estimation performance under different optical signal-to-noise ratios and block data lengths is given.

投稿润色
补充资料

中图分类号:O436

DOI:10.3788/aos201838.0106004

所属栏目:光纤光学与光通信

基金项目:国家自然科学基金(61205046, 61575051)、深圳市科技计划项目(JCYJ20150327155705357, KQCX2015032409501296, JSGG20150529153336124, JCYJ20150529114045265, JSGG20170414141239041)

收稿日期:2017-07-27

修改稿日期:2017-08-24

网络出版日期:--

作者单位    点击查看

侯冰洁:哈尔滨工业大学深圳研究生院, 广东 深圳 518055
杨彦甫:哈尔滨工业大学深圳研究生院, 广东 深圳 518055
向前:哈尔滨工业大学深圳研究生院, 广东 深圳 518055
张群:哈尔滨工业大学深圳研究生院, 广东 深圳 518055
姚勇:哈尔滨工业大学深圳研究生院, 广东 深圳 518055

联系人作者:侯冰洁(1095132804@qq.com)

备注:侯冰洁(1993-), 女, 硕士研究生, 主要从事相干光通信方面的研究。E-mail: 1095132804@qq.com

【1】Lau A P T, Barros D J F, Ip E, et al. Coherent detection in optical fiber systems[J]. Optics Express, 2008, 16(2): 753-791.

【2】Ip E M, Kahn J M. Fiber impairment compensation using coherent detection and digital signal processing[J]. Journal of Lightwave Technology, 2010, 28(4): 502-519.

【3】Wang P, Chen J, You X D, et al. Flexible decision-aided maximum likelihood phase estimation for optical coherent QAM signals[J]. Acta Optica Sinica, 2016, 36(8): 0806007.
王萍, 陈健, 由骁迪, 等. 光相干QAM信号的弹性DAML相位估计[J]. 光学学报, 2016, 36(8): 0806007.

【4】Selmi M, Jaouen Y, Ciblat P. Accurate digital frequency offset estimator for coherent PolMux QAM transmission systems[C]. European Conference on Optical Communication, 2009: 10918813.

【5】Nakagawa T, Ishihara K, Kobayashi T, et al. Wide-range and fast-tracking frequency offset estimator for optical coherent receivers[C]. European Conference and Exhibition on Optical Communication, 2010: 11636831.

【6】Zhou X, Chen X, Long K. Wide-range frequency offset estimation algorithm for optical coherent systems using training sequence[J]. IEEE Photonics Technology Letters, 2011, 24(1): 82-84.

【7】Viterbi A. Nonlinear estimation of PSK-modulated carrier phase with application to burst digital transmission[J]. IEEE Transactions on Information Theory, 1983, 29(4): 543-551.

【8】Noé R, Hoffmann S, Pfau T. Hardware-efficient coherent digital receiver concept with feedforward carrier recovery for M-QAM constellations[J]. Journal of Lightwave Technology, 2009, 27(8): 989-999.

【9】Khalil M I, Adib M M H, Chowdhury A M, et al. Least radial distance based carrier phase recovery for 16-QAM coherent optical systems[C]. Optoelectronics & Communications Conference Held Jointly with 2013 International Conference on Photonics in Switching, 2013: 13768817.

【10】Shu N, Inoue T. Carrier recovery for M-QAM signals based on a block estimation process with Kalman filter[J]. Optics Express, 2014, 22(13): 15376-15387.

【11】Marshall T, Szafraniec B, Nebendahl B. Kalman filter carrier and polarization-state tracking[J]. Optics Letters, 2010, 35(13): 2203-2205.

【12】Cao G L, Yang Y F, Wang F, et al. Extended Kalman based polarization and carrier phase quickly tracking for PDM-16QAM[J]. Acta Optica Sinica, 2014, 34(12): 1206005.
曹国亮, 杨彦甫, 王非, 等. 基于扩展卡尔曼的PDM-16QAM偏振态和载波相位快速跟踪[J]. 光学学报, 2014, 34(12): 1206005.

【13】Proakis J G, Salehi M. Digital Communications[M]. 5th ed. Columbus: McGraw-Hill Science/Engineering/Math, 2008.

【14】Qiu M, Zhuge Q, Xu X, et al. Simple and efficient frequency offset tracking and carrier phase recovery algorithms in single carrier transmission systems[J]. Optics Express, 2013, 21(7): 8157-8165.

【15】Jain A, Landais P, Krishnamurthy P K, et al. Extended Kalman filter for estimation of phase noises and frequency offset in 400G PM-16-QAM systems[C]. 13th International Conference on Fiber Optics and Photonics, 2016, Tu3A: Tu3A.3.

引用该论文

Hou Bingjie,Yang Yanfu,Xiang Qian,Zhang Qun,Yao Yong. A Joint Frequency Offset and Phase Estimation Scheme Based on Cascaded EKF and LKF[J]. Acta Optica Sinica, 2018, 38(1): 0106004

侯冰洁,杨彦甫,向前,张群,姚勇. 基于EKF和LKF级联的频偏和相位估计联合方案[J]. 光学学报, 2018, 38(1): 0106004

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF