首页 > 论文 > 中国激光 > 45卷 > 1期(pp:102002--1)

Ti811表面原位生成纳米Ti3Al激光熔覆层的组织和性能

Microstructure and Properties of Nano-Ti3Al Laser Cladding Layer Prepared on Ti811 Alloy Surface

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

利用同步送粉激光熔覆技术在Ti811合金表面制备了单道激光熔覆层。利用X射线衍射仪、扫描电镜、能谱分析仪等分析了熔覆层的组织和相组成, 利用显微硬度计测试了熔覆层的显微硬度, 利用摩擦磨损试验机和白光干涉轮廓仪测试了熔覆层的摩擦磨损性能。结果表明:熔覆层为典型的魏氏组织, 在α-Ti围成的晶界中分布着α′-Ti、α″-Ti和β′-Ti, 纳米Ti3Al颗粒弥散分布在熔覆层中; 与基底相比, 熔覆层的显微硬度较, 最高为480 HV; 涂层中弥散分布着大量纳米Ti3Al颗粒, 有效降低了熔覆层的摩擦因数, 提高了熔覆层的摩擦磨损性能。

Abstract

Single channel laser cladding layer is prepared on Ti811 titanium alloy surface using synchronous powder feeding laser cladding technology. Microstructure and phase composition of the layer are analyzed with utilization of X-ray diffractometer, scanning electron microscope and energy dispersive spectrometer. The microhardness of the layer is measured with utilization of micro-sclerometer, and friction and wear properties are measured with utilization of the friction wear testing machine and the white-light interferometry profilometer. The results show that the typical Widmanstatten structure is found in the layer. α′-Ti, α″-Ti, and β′-Ti are distributed in the crystal boundary surrounded by α-Ti, and the nano-Ti3Al particles are dispersively distributed in the layer. The highest microhardness of the layer is 480 HV, which is higher than that of the substrate. A large number of nano-Ti3Al particles are dispersively distributed in the layer. Under the action of particles, the friction coefficient decreases and the friction and wear properties increase.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TG174.44

DOI:10.3788/cjl201845.0102002

所属栏目:激光制造

收稿日期:2017-06-22

修改稿日期:2017-08-29

网络出版日期:--

作者单位    点击查看

张天刚:中国民航大学工程技术训练中心, 天津 300300
孙荣禄:天津工业大学机械工程学院, 天津 300387天津市现代机电装备技术重点实验室, 天津 300387

联系人作者:张天刚(113099506@qq.com)

备注:张天刚(1978-), 男, 博士, 副教授, 主要从事金属表面改性方面的研究。

【1】Zhang X H, Liu D X. Influence of surface coating on Ti811 alloy resistance to fretting fatigue at elevated temperature[J]. Rare Metals, 2009, 28(3): 266-271.

【2】Bhaumik S K, Rangaraju R, Venkataswamy M A, et al. Fatigue fracture of crankshaft of an aircraft engine[J]. Engineering Failure Analysis, 2002, 9(3): 255-263.

【3】Wang Y F, Xiao L J, Liu M X, et al. Research progress of laser cladding amorphous coatings[J]. Laser & Optoelectronics Progress, 2014, 51(7): 070002.
王彦芳, 肖丽君, 刘明星, 等. 激光熔覆制备非晶复合涂层的研究进展[J]. 激光与光电子学进展, 2014, 51(7): 070002.

【4】Li J N, Gong S L, Shan F H, et al. Analysis of microstructure performance of laser clad Ti3Al matrix composite coating on aviation titanium alloy[J]. Aeronautical Manufacturing Technology, 2013 (16): 76-80, 84.
李嘉宁, 巩水利, 单飞虎, 等. 航空钛合金表面激光熔覆Ti3Al基复合涂层的组织性能分析[J]. 航空制造技术, 2013(16): 76-80, 84.

【5】Zhu Z S. Research and development of new-brand titanium alloys of high performance for aeronautical applications[M]. Beijing: Aviation Industry Press, 2013.
朱知寿. 新型航空高性能钛合金材料技术研究与发展[M]. 北京: 航空工业出版社, 2013.

【6】张喜燕, 赵永庆, 白晨光. 钛合金及应用[M]. 北京: 化学工业出版社, 2005.

【7】Li R F. Synthesis and characterization of Ni-based amorphous composite coating using diode laser processing[D]. Shanghai: Shanghai Jiao Tong University, 2013.
李瑞峰. 镍基非晶复合涂层的半导体激光制备及表征[D]. 上海: 上海交通大学, 2013.

【8】Zhao Y Q, Chen Y N, Zhang X M, et al. Phase transformation and heat treatment of Titanium alloys[M]. Changsha: Central South University Press, 2012.
赵永庆, 陈永楠, 张学敏, 等. 钛合金相变及热处理[M]. 长沙: 中南大学出版社, 2012.

【9】Sun F. Investigation of phase transformation kinetics and microstructure evolution in Ti60 alloy[D]. Xi′an: Northwestern Polytechnical University, 2015.
孙峰. Ti60钛合金相变动力学及组织演变研究[D]. 西安: 西北工业大学, 2015.

【10】Chen H, Zhou H M, Zou Y. Synthesis of ultrafine crystal/nanocrystalline TiAl-based alloy by in situ sintering[J]. Rare Metal Materials and Engineering, 2015, 44(10): 2387-2390.

【11】Yan Y J. Study of hydrogen embrittlement of precipitation strengthened austenitic stainless steel weldment[D]. Beijing: University of Science and Technology Beijing, 2015.
闫英杰. 沉淀强化奥氏体不锈钢焊件氢脆研究[D]. 北京: 北京科技大学, 2015.

【12】Zhou H P. Fabrication and properties of ultrafine-grained AZ31 magnesium alloys strengthened with Ti dispersions[D]. Harbin: Harbin Institute of Technology, 2016.
周海萍. Ti弥散强化超细晶AZ31镁合金制备与组织性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2016.

【13】黄伯云. 钛铝基金属间化合物[M]. 长沙: 中南工业大学出版社, 1998.

【14】Gao X S, Huang Y H, Tian Z J, et al. Erosive wear resistance behavior of laser cladding Al2O3+13%TiO2 coating prepared by plasma spraying on titanium alloy surface[J]. Chinese Journal of Lasers, 2010, 37(3): 858-862.
高雪松, 黄因慧, 田宗军, 等. 钛合金表面激光熔覆等离子体喷涂Al2O3+13%TiO2涂层冲蚀磨损性能[J]. 中国激光, 2010, 37(3): 858-862.

【15】Guo C, Chen J M, Yao R G, et al. Microstructure and tribological properties of Ti3Al intermetallic compound coating by laser cladding[J]. Tribology, 2013, 33(1): 14-21.
郭纯, 陈建敏, 姚润钢, 等. 激光熔覆原位制备Ti3Al金属间化合物涂层结构及摩擦学性能[J]. 摩擦学学报, 2013, 33(1): 14-21.

【16】Ju Y, Guo S Y, Chen S Z, et al. Tribological properties of Ni-clad nano-Al2O3 composite coatings by high-energy laser irradiation[J]. Tribology, 2007, 27(1): 50-53.
居毅, 郭绍义, 陈生钻, 等. 激光镍包纳米Al2O3增强复合涂层的摩擦磨损性能研究[J]. 摩擦学学报, 2007, 27(1): 50-53.

引用该论文

Zhang Tiangang,Sun Ronglu. Microstructure and Properties of Nano-Ti3Al Laser Cladding Layer Prepared on Ti811 Alloy Surface[J]. Chinese Journal of Lasers, 2018, 45(1): 0102002

张天刚,孙荣禄. Ti811表面原位生成纳米Ti3Al激光熔覆层的组织和性能[J]. 中国激光, 2018, 45(1): 0102002

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF