首页 > 论文 > 中国激光 > 45卷 > 1期(pp:101011--1)

65 mJ室温Fe2+∶ZnSe中红外激光器

65 mJ Fe2+∶ZnSe Mid-Infrared Laser at Room Temperature

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

Fe2+∶ZnSe晶体作为3~5 μm波段极具潜力的中红外激光介质之一, 在材料特性和转换效率等方面具有明显优势。对Fe2+∶ZnSe晶体的吸收特性进行了研究, 利用自制放电引发的非链式脉冲HF激光抽运Fe2+掺杂浓度为4×1018 cm-3、尺寸为10 mm×10 mm×5 mm的Fe2+∶ZnSe 晶体, 在室温下获得了65 mJ 的高能量Fe2+∶ZnSe中红外激光输出, 光光转换效率为31%, 输出激光能量相对于晶体吸收抽运光能量的斜率效率可达37%。

Abstract

As one of the most promising mid-infrared laser mediums in 3-5 μm wavelength region, Fe2+∶ZnSe crystal has many advantages in material property and conversion efficiency. The absorption characteristic of Fe2+∶ZnSe is investigated. A Fe2+∶ZnSe crystal with size of 10 mm×10 mm×5 mm and Fe2+ doping concentration of 4×1018 cm-3 is excited by a non-chain electric-discharge pulsed HF laser at room temperature. The maximum output energy reaches 65 mJ and the optical to optical conversion efficiency is 31%. The slope efficiency respecting to the absorbed pump energy is 37%.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O436

DOI:10.3788/cjl201845.0101011

所属栏目:激光器件与激光物理

基金项目:国家自然科学基金(60708005, 61178029, 61575198)

收稿日期:2017-07-14

修改稿日期:2017-09-11

网络出版日期:--

作者单位    点击查看

孔心怡:中国科学院电子学研究所先进激光技术部, 北京 100190中国科学院大学, 北京 100190
柯常军:中国科学院电子学研究所先进激光技术部, 北京 100190
胡呈峰:西安电子科技大学, 陕西 西安 710071
朱江峰:西安电子科技大学, 陕西 西安 710071
吴天昊:中国科学院电子学研究所先进激光技术部, 北京 100190中国科学院大学, 北京 100190
杭寅:中国科学院上海光学精密机械研究所, 上海 201800

联系人作者:孔心怡(kongxinyi15@mails.ucas.ac.cn)

备注:孔心怡(1994-), 女, 硕士研究生, 主要从事中红外激光器方面的研究。

【1】Taubman M S, Scott D C, Myers T L, et al. Long wave infrared cavity enhanced sensors using quantum cascade lasers[C]. SPIE, 2005, 6010: 60100C.

【2】Sabbir L, Kevin A B, Laura X, et al. Noninvasive in vivo glucose sensing on human subjects using mid-infrared light[J]. Optics Express, 2014, 5(7): 2397-2401.

【3】Ren W, Jiang W Z, Frank K. Single-QCL-based absorption sensor for simultaneous trace-gas detection of CH4 and N2O[J]. Applied Physics B, 2014, 117: 245-251.

【4】Hofstetter D, Faist J. High performance quantum cascade lasers and their applications[M]//Solid-state mid-infrared laser sources.[S.l.]: Springer, 2003: 61-98.

【5】Vodopyanov K. Pulsed mid-IR optical parametric oscillators[M/OL]//Solid-state mid-infrared laser sources, 2003: 141-178[2017-07-14]. https://link.springer.com/content/pdf/10.1007%2F3-540-36491-9.pdf.

【6】DeLoach L D, Page R H, Wilke G D, et al. Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media[J]. IEEE Journal of Quantum Electronics, 1996, 32(6): 885-895.

【7】Adams J J, Bibeau C, Page R H, et al. 4.0-4.5 μm lasing of Fe∶ZnSe below 180 K, a new mid-infrared laser material[J]. Optics Letters, 1999, 24(23): 1720-1722.

【8】Velikanov S D, Danilov V P, Zakharov N G, et al. Fe2+∶ZnSe laser pumped by a nonchain electric-discharge HF laser at room temperature[J]. Quantum Electronics, 2014, 44(2): 141-144.

【9】Evans J W, Berry P A, Schepler K L. A passively Q-switched CW-pumped Fe∶ZnSe laser[J]. IEEE Journal of Quantum Electronics, 2014, 50(3): 204-209.

【10】Myoung N, Fedorov V V, Mirov S B, et al. Temperature and concentration quenching of mid-IR photoluminescence in iron doped ZnSe and ZnS laser crystals[J]. Journal of Luminescence, 2012, 132(3): 600-606.

【11】Kernal J, Fedorov V V, Gallian A, et al. 3.9-4.8 μm gain-switched lasing of Fe∶ZnSe at room temperature[J]. Optics Express, 2005, 13(26): 10608-10615.

【12】Jelinkova H, Doroshenko M E, Jelinek M, et al. Fe∶ZnSe laser oscillation under cryogenic and room temperature[C]. SPIE, 2013, 8599: 85990E.

【13】Zajac A, Skorczakowski M, Swiderski J, et al. Electrooptically Q-witched mid-infrared Er∶YAG laser for medical applications[J]. Optics Express, 2004, 12(21): 5262.

【14】Kozlovsky V I, Akimov V A, Frolov M P, et al. Room-temperature tunable mid-infrared lasers on transition-metal doped II-VI compound crystals grown from vapor phase[J]. Physica Status Solidi, 2010, 247(6): 1553-1556.

【15】Apollonov V V, Kazantsev S Y, Oreshkin V F, et al. Nonchain electric-discharge HF(DF) laser with a high radiation energy[J]. Quantum Electronics, 1998, 28(2): 116-118.

【16】Ke C J, Wan C Y, Zhou J W. High peak power HF laser[J]. Laser Technology, 2004, 28(5): 480-482.
柯常军, 万重怡, 周锦文. 高峰值功率脉冲氟化氢激光器[J]. 激光技术, 2004, 28(5): 480-482.

【17】Ke C J, Zhang K H, Sun K, et al. A periodically pulsed HF/DF gas discharge laser[J]. Infrared and Laser Engineering, 2007, 36(s1): 36-38.
柯常军, 张阔海, 孙科, 等. 重复频率放电引发的脉冲HF(DF)激光器[J]. 红外与激光工程, 2007, 36(s1): 36-38.

【18】Firsov K N, Gavrishchuk E M, Kazantsev S Y, et al. Increasing the radiation energy of ZnSe∶Fe2+ laser at room temperature[J]. Laser Physics Letters, 2014, 11(9): 085001.

【19】Velikanov S D, Gavrishchuk E M, Zaretsky N A, et al. Repetitively pulsed Fe∶ZnSe laser with an average output power of 20 W at room temperature of the polycrystalline active element[J]. Quantum Electronics, 2017, 47(4): 303-307.

【20】Yao B Q, Xia S X, Yu K K, et al. Fe2+∶ZnSe achieving laser output[J]. Chinese Journal of Lasers, 2015, 42(1): 0119001.
姚宝权, 夏士兴, 于快快, 等. Fe2+∶ZnSe实现中红外波段激光输出[J]. 中国激光, 2015, 42(1): 0119001.

【21】柯常军, 王东蕾, 王向永, 等. 室温Fe2+∶ZnSe激光器获得15 mJ中红外激光输出[J]. 中国激光, 2015, 42(2): 0219004.

【22】Il′ichev N N, Shapkin P V, Kulevsky L A, et al. Nonlinear transmittance of ZnSe∶Fe2+ crystal at a wavelength of 2.92 μm[J]. Laser Physics, 2007, 17(2): 130-133.

引用该论文

Kong Xinyi,Ke Changjun,Hu Chengfeng,Zhu Jiangfeng,Wu Tianhao,Hang Yin. 65 mJ Fe2+∶ZnSe Mid-Infrared Laser at Room Temperature[J]. Chinese Journal of Lasers, 2018, 45(1): 0101011

孔心怡,柯常军,胡呈峰,朱江峰,吴天昊,杭寅. 65 mJ室温Fe2+∶ZnSe中红外激光器[J]. 中国激光, 2018, 45(1): 0101011

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF