首页 > 论文 > 中国激光 > 45卷 > 1期(pp:101007--1)

基于WS2可饱和吸收体的窄线宽皮秒脉冲光纤激光器

Narrow Linewidth Picosecond Pulsed Fiber Lasers Based on WS2 Saturable Absorber

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

针对超短脉冲光纤激光器光谱线宽较大的问题进行研究, 利用RP Fiber软件对激光器腔内脉冲演化过程进行模拟计算, 分析了几种可饱和吸收体对激光器输出脉冲宽度和线宽的影响, 并对激光器的腔长和光纤布拉格光栅(FBG)参数进行了优化。最终, 根据优化结果, 搭建了一种基于WS2可饱和吸收体的环形腔被动锁模皮秒脉冲掺铒光纤激光器, 并利用窄带FBG对输出脉冲的光谱线宽进行压缩, 获得了中心波长为1549.4 nm、脉冲宽度为171 ps的窄线宽超短脉冲输出, 其3 dB光谱线宽为0.02 nm。

Abstract

The problem of large spectral linewidth of ultrashort pulse laser is studied. The pulse evolution process in the laser cavity is simulated by RP Fiber software. The effects of different saturable absorber versus the pulse width and spectral linewidth on the laser are studied, and the cavity length and fiber Bragg grating (FBG) parameters of the laser are optimized. Finally, a passively mode-locked picosecond pulse erbium-doped ring fiber laser based on WS2 saturable absorber is designed according to the optimization results. The spectral linewidth of the output pulse is compressed by the narrowband FBG, and a narrow linewidth ultrashort-pulse output with center wavelength of 1549.4 nm, pulse width of 171 ps and 3 dB spectral linewidth of 0.02 nm is obtained.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN248

DOI:10.3788/cjl201845.0101007

所属栏目:激光器件与激光物理

收稿日期:2017-07-18

修改稿日期:2017-09-11

网络出版日期:--

作者单位    点击查看

徐成阳:长春理工大学高功率半导体激光国家重点实验室, 吉林 长春 130022
金亮:长春理工大学高功率半导体激光国家重点实验室, 吉林 长春 130022
陈华龙:长春理工大学高功率半导体激光国家重点实验室, 吉林 长春 130022
张贺:长春理工大学高功率半导体激光国家重点实验室, 吉林 长春 130022
徐英添:长春理工大学高功率半导体激光国家重点实验室, 吉林 长春 130022
邹永刚:长春理工大学高功率半导体激光国家重点实验室, 吉林 长春 130022
马晓辉:长春理工大学高功率半导体激光国家重点实验室, 吉林 长春 130022
吴国盛:陆军装甲兵驻长春地区军事代表室, 吉林 长春 130022
隋庆学:陆军装甲兵驻长春地区军事代表室, 吉林 长春 130022
张志敏:陆军装甲兵驻长春地区军事代表室, 吉林 长春 130022

联系人作者:徐成阳(shq18xcy@163.com)

备注:徐成阳(1988-), 男, 硕士研究生, 主要从事非线性光学和光纤激光器方面的研究。

【1】Richardson D J, Nilsson J, Clarkson W A. High power fiber lasers: current status and future perspectives [Invited][J]. Journal of the Optical Society of America B, 2010, 27(11): B63-B92.

【2】Ehlers P, Silander I, Wang J, et al. Fiber-laser-based noise-immune cavity-enhanced optical heterodyne molecular spectrometry instrumentation for Doppler-broadened detection in the 10-12 cm- 1 Hz- 1/2 region[J]. Journal of the Optical Society of America B, 2012, 29(6): 1305-1315.

【3】Ahmad H, Muhammad F D, Chang H P, et al. Dual-wavelength fiber lasers for the optical generation of microwave and terahertz radiation[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2016, 20(5): 166-173.

【4】Shi W, Leigh M, Zong J, et al. Power scaling for narrow linewidth C-band pulsed fiber lasers using a highly Er/Yb co-doped phosphate glass fiber[C]. SPIE, 2008, 6890: 68900K.

【5】Shi W, Petersen E B, Leigh M, et al. High-energy single-mode single-frequency all-fiber laser pulses covering C-band based on highly co-doped phosphate glass fibers[C]// Proceedings of SPIE, 2009, 7195: 71951H.

【6】Jiao Z, Zhang B, Wang B. Linearly polarized and narrow-linewidth pulse generation at high repetition rate from an all-fiber gain-switched Thulium-doped fiber laser[J]. Optics & Laser Technology, 2014, 55(2): 58-61.

【7】Lyu Y, Li J, Hu Y, et al. Theoretical comparison of NPR and hybrid mode-locked soliton thulium-doped fiber lasers[J]. IEEE Photonics Journal, 2017, 9(1): 1500711.

【8】Popa D, Sun Z, Torrisi F, et al. Sub 200 fs pulse generation from a graphene mode-locked fiber laser[J]. Applied Physics Letters, 2010, 97(20): 203106.

【9】Luo J, Yang S, Hao Q, et al. Precise locking the repetition rate of a SESAM mode-locking all polarization maintaining fiber laser[J]. Acta Optica Sinica, 2017, 37(2): 0206003.
罗浆, 杨松, 郝强, 等. SESAM锁模全保偏光纤激光器重复频率的精确锁定[J]. 光学学报, 2017, 37(2): 0206003.

【10】Boguslawski J, Sotor J, Sobon G, et al. Graphene oxide paper as a saturable absorber for Er- and Tm-doped fiber lasers[J]. Photonics Research, 2015, 3(4): 119-124.

【11】Sotor J, Pasternak I, Krajewska A, et al. Sub-90 fs a stretched-pulse mode-locked fiber laser based on a graphene saturable absorber[J]. Optics Express, 2015, 23(21):27503-27508.

【12】Liu W, Pang L, Han H, et al. 70-fs mode-locked erbium-doped fiber laser with topological insulator[J]. Scientific Reports, 2016, 5: 19997.

【13】Wang J, Cai Z, Xu P, et al. Pulse dynamics in carbon nanotube mode-locked fiber lasers near zero cavity dispersion[J]. Optics Express, 2015, 23(8): 9947-9958.

【14】Yan P, Lin R, Chen H, et al. Topological insulator solution filled in photonic crystal fiber for passive mode-locked fiber laser[J]. IEEE Photonics Technology Letters, 2015, 27(3): 264-267.

【15】Liu W, Pang L, Han H, et al. Tungsten disulfidesaturable absorbers for 67 fs mode-locked erbium-doped fiber lasers[J]. Optics Express, 2017, 25(3): 2950-2959.

【16】Yang C Y,Liu M L,Yu W T, et al. Q-switched characteristics of tungsten disulfide Er-doped fiber laser[J]. Chinese Journal of Lasers, 2017, 44(7): 0703015.
杨春玉, 刘孟丽, 于维天, 等. 二硫化钨掺铒光纤激光器调Q特性[J]. 中国激光, 2017, 44(7): 0703015.

【17】Xu J, Wu S D, Liu J, et al. Narrow line-width picosecond Erbium-doped fiber lasers passively mode-locked with graphene oxide[J]. Chinese Journal of Lasers, 2012, 39(7): 0702002.
徐佳, 吴思达, 刘江, 等. 基于氧化石墨烯被动锁模的窄线宽皮秒脉冲掺铒光纤激光器[J]. 中国激光, 2012, 39(7): 0702002.

【18】Ren J, Wu S D, Cheng Z C, et al. Mode-locked femtosecond Erbium-doped fiber laser based on graphene oxide versus semiconductor saturable absorber mirror[J]. Chinese Journal of Lasers, 2015, 42(6): 0602013.
任军, 吴思达, 程昭晨, 等. 基于氧化石墨烯与半导体可饱和吸收镜的锁模飞秒掺铒光纤激光器[J]. 中国激光, 2015, 42(6): 0602013.

【19】Zou F, Wang Z K, Wang Z W, et al. Gigahertz narrow-linewidth high-peak power nanosecond fiber laser[J]. Chinese Journal of Lasers, 2016, 43(7): 0701001.
邹峰, 王兆坤, 王子薇, 等. 吉赫兹级窄线宽、高峰值功率纳秒光纤激光器[J]. 中国激光, 2016, 43(7): 0701001.

引用该论文

Xu Chengyang,Jin Liang,Chen Hualong,Zhang He,Xu Yingtian,Zou Yonggang,Ma Xiaohui,Wu Guosheng,Sui Qingxue,Zhang Zhimin. Narrow Linewidth Picosecond Pulsed Fiber Lasers Based on WS2 Saturable Absorber[J]. Chinese Journal of Lasers, 2018, 45(1): 0101007

徐成阳,金亮,陈华龙,张贺,徐英添,邹永刚,马晓辉,吴国盛,隋庆学,张志敏. 基于WS2可饱和吸收体的窄线宽皮秒脉冲光纤激光器[J]. 中国激光, 2018, 45(1): 0101007

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF