首页 > 论文 > 中国激光 > 45卷 > 1期(pp:101006--1)

连续运转Yb∶YAG板条激光器的双波长放大特性

Dual-Wavelength Amplification Properties of Continuous-Operation Yb∶YAG Slab Laser

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

报道了一种室温条件下工作的高功率激光二极管(LD)端面抽运Yb∶YAG板条双波长激光放大器, 稳定的双波长运转在1029.6, 1031.5 nm。基于Yb∶YAG宽带荧光特性, 建立了双波长放大模型, 通过数值模拟研究了不同抽运条件下激光光谱放大输出特性。通过940 nm激光二极管双端抽运Yb∶YAG晶体, 拥有双波长光谱的种子光从晶体一端注入并进行放大。实验结果表明,在1.18 kW注入时获得了6.56 kW的双波长连续激光输出, 与数值模拟结果相吻合。双波长激光放大理论和实验研究为进一步实现高功率光谱合成等应用奠定了基础。

Abstract

This paper reports a laser diode (LD) end-pumped Yb∶YAG slab dual-wavelength laser amplifier with high power working at room temperature. The dual-wavelength stably operates at 1029.6, 1031.5 nm. Based on the broadband fluorescence characteristic of Yb∶YAG, the dual-wavelength amplification model is built and corresponding numerical simulation is taken to study the laser spectrum amplification output properties under different pump conditions. 940 nm laser diodes is used to pump the Yb∶YAG crystal at two ends. The seed laser with the dual-wavelength spectrum is injected from one end of the crystal and amplified. Experimental results show that continuous-wave (CW) dual-wavelength laser output power of 6.56 kW is acquired when the seed injection is 1.18 kW, which matches the simulation results. These theoretical and experimental researches of dual-wavelength laser amplification can lay the foundation for the applications such as high-power spectral combination, etc.

投稿润色
补充资料

中图分类号:TN248.1

DOI:10.3788/cjl201845.0101006

所属栏目:激光器件与激光物理

收稿日期:2017-07-31

修改稿日期:2017-09-08

网络出版日期:--

作者单位    点击查看

马艺芳:中国工程物理研究院应用电子学研究所, 四川 绵阳 621900
申艺杰:清华大学精密仪器系光子与电子学研究中心, 北京 100084
徐浏:中国工程物理研究院应用电子学研究所, 四川 绵阳 621900
李密:中国工程物理研究院应用电子学研究所, 四川 绵阳 621900
周唐建:中国工程物理研究院应用电子学研究所, 四川 绵阳 621900
林伟平:中国工程物理研究院应用电子学研究所, 四川 绵阳 621900
高清松:中国工程物理研究院应用电子学研究所, 四川 绵阳 621900

联系人作者:马艺芳(mayf0302@foxmail.com)

备注:马艺芳(1992-), 女, 硕士研究生, 主要从事激光二极管泵浦固体激光技术方面的研究。

【1】Morvan L,Lai N D,Dolfi D, et al. Building blocks for a two-frequency laser lidar-radar: a preliminary study[J]. Applied Optics, 2002, 41(27): 5702-5712.

【2】Hu S X, Hu H L, Zhang Y C, et al. Differential absorption lidar for environmental SO2 measurements[J]. Chinese Journal of Lasers, 2004, 31(9): 1121-1126.
胡顺星, 胡欢陵, 张寅超, 等. 差分吸收激光雷达测量环境SO2[J]. 中国激光, 2004, 31(9): 1121-1126.

【3】Wang Z K, Du S J, Wang J H, et al. All fiber tunable- or dual-wavelength Yb-doped fiber laser covering from dissipative soliton to dissipative soliton resonance[J]. Chinese Optics Letters, 2016, 14(4): 041401.

【4】Bai Y B, Xiang W H, Zu P, et al. Tunable two wavelengths linear-cavity Yb-doped fiber laser based on volume grating[J]. Chinese Journal of Lasers, 2011, 38(11): 1102004.
白扬博, 向望华, 祖鹏, 等. 基于体光栅的可调谐线型腔双波长掺镱光纤激光器[J]. 中国激光, 2011, 38(11): 1102004.

【5】Suzuki T, Yazawa T, Sasaki O. Two-wavelength laser diode interferometer with time-sharing sinusoidal phase modulation[J]. Applied optics, 2002, 41(10): 1972-1976.

【6】Pinto A M R, Frazao O, Santos J L, et al. Interrogation of a suspended-core Fabry-Perot temperature sensor through a dual wavelength Raman fiber laser[J]. Journal of Lightware Technology, 2010, 28(21): 3149-3155.

【7】Kong F Q, Romeira B, Zhang J J, et al. A dual-wavelength fiber ring laser incorporating an injection-coupled optoelectronic oscillator and its application to transverse load sensing[J]. Journal of Lightware Technology, 2014, 32(9): 1784-1793.

【8】Baxter J B, Guglietta G W. Terahertz spectroscopy[J]. Analytical Chemistry, 2011, 83(12): 4342-4368.

【9】Reid C B, Pickwell-MacPherson E, Laufer J G, et al. Accuracy and resolution of THz reflection spectroscopy for medical imaging[J]. Physics in Medicine & Biology, 2010, 55(16): 4825-4838.

【10】Zhang J, Liu H L, Xia J, et al. Orthogonally polarized dual-wavelength Nd∶YLiF4 laser[J]. Chinese Optics Letters, 2015, 13(3): 031402.

【11】Sangla D, Martial I, Aubry N, et al. High power laser operation with crystal fibers[J]. Applied Physics B, 2009, 97(2): 263-273.

【12】Zhou S J, Gu P, Li X L, et al. Continuous wave dual-wavelength Nd∶YVO4 laser working at 1064 and 1066 nm[J]. Chinese Optics Letters, 2017, 15(7): 071401.

【13】Yu H W, Xu M J, Duan W T, et al. Investigation on pumping dynamics and pulsed energy storagy perfermance of Yb ions[J]. Acta Physica Sinica, 2007, 66(7): 4158-4168.
於海武, 徐美健, 段文涛, 等 . Yb离子抽运动力学及脉冲储能特性研究[J]. 物理学报, 2007, 56(7): 4158-4168.

【14】Brasseur J K, Abeeluck A K, Awtry A R, et al. 2.3 kW cryogenically cooled Yb∶YAG laser[C]. International Quantum Electronics Conference on Lasers and Electro-Optics, 2009: CThR1.

【15】Fu X, Gong M. Single-side-pumped slab laser amplifier chain: design and numerical modeling[J]. IEEE J Quantum Electron, 2010, 46(8): 1197-1205.

【16】Chen X, Xu L, Hu H, et al. High-efficiency, high-average-power, CW Yb∶YAG zigzag slab master oscillator power amplifier at room temperature[J]. Optics Express, 2016, 24(21): 24517-24523.

【17】Casagrande O, Deguil-Robin N, Garrec B L, et al. Time and spectrum resolved model for quasi-three-level gain-switched lasers[J]. IEEE J Quantum Electron, 2007, 43(2): 206-212.

【18】Bourdet G L. Theoretical investigation of quasi-three-level longitudinally pumped continuous wave lasers[J]. Applied Optics, 2000, 39(6): 966-971.

引用该论文

Ma Yifang,Shen Yijie,Xu Liu,Li Mi,Zhou Tangjian,Lin Weiping,Gao Qingsong. Dual-Wavelength Amplification Properties of Continuous-Operation Yb∶YAG Slab Laser[J]. Chinese Journal of Lasers, 2018, 45(1): 0101006

马艺芳,申艺杰,徐浏,李密,周唐建,林伟平,高清松. 连续运转Yb∶YAG板条激光器的双波长放大特性[J]. 中国激光, 2018, 45(1): 0101006

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF