首页 > 论文 > 中国激光 > 45卷 > 1期(pp:101012--1)

直接液体冷却薄片激光器设计

Design of Direct-Liquid-Cooled Thin-Disk Laser

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

详细讨论了直接液体冷却薄片激光器的设计。包括增益模块中晶体和冷却液的选取, 以及流道结构的设计, 分析了增益模块中两类组合方式各自的优缺点。组合方式一中, 需要严格控制激光的入射角以及晶体的切割角, 给出了具体的计算和分析。组合方式二无需特别选取角度, 然而所选的冷却液的折射率要与晶体的折射率尽可能一致。在抽运方式选取方面, 分析了采用端面抽运和侧面抽运对激光器储能以及像差等方面的影响。最终, 理论分析了采用10片Nd∶YLF作为增益介质, 折射率匹配液作为冷却液, 在抽运功率为5 kW时, 激光器输出功率大于1 kW, 光-光效率大于20%, 理论分析和实验结果基本一致。

Abstract

The design of the direct-liquid-cooled thin-disk laser is detailedly discussed. It includes the choosing of crystal and coolant in the gain module as well as the design of the channel structure. Moreover, the advantages and disadvantages of two kinds of combination modes are analyzed. In the first mode, the incident angle of the beam and the cutting angle of the crystal should be controlled strictly. The theory calculations and analysis are given. In the second mode, the angles do not need to be specially selected, while the refractive index of the coolant should be close to that of the crystal. In the aspect of pump mode selection, the energy storage and aberration effects both in end-pumped and side-pumped lasers are analyzed. Theoretically, with the use of 10 pieces of Nd∶YLF thin-disks as the gain media and the refractive index matched liquid as the coolant, an average output power larger than 1 kW is achieved at the pump power of 5 kW, corresponding to an optical-optical efficiency larger than 20%. The theoretical analysis is basically consistent with the experimental results.

投稿润色
补充资料

中图分类号:TN248.1

DOI:10.3788/cjl201845.0101012

所属栏目:激光器件与激光物理

基金项目:国家自然科学基金(51605253)、浙江省自然科学基金(LY16E050011)、衢州市科技计划项目(2016Y012)、衢州学院师资队伍建设专项经费资助(BSYJ201705)

收稿日期:2017-08-31

修改稿日期:2017-09-28

网络出版日期:--

作者单位    点击查看

叶志斌:衢州学院电气与信息工程学院, 浙江 衢州 324000
涂波:中国工程物理研究院应用电子学研究所, 四川 绵阳 621000
王柯:中国工程物理研究院应用电子学研究所, 四川 绵阳 621000
尚建力:中国工程物理研究院应用电子学研究所, 四川 绵阳 621000
于益:中国工程物理研究院应用电子学研究所, 四川 绵阳 621000
邓小雷:衢州学院机械工程学院, 浙江 衢州 324000

联系人作者:叶志斌(nibihzey@zju.edu.cn)

备注:叶志斌(1989-), 男, 博士, 讲师, 主要从事高亮度固体激光器方面的研究。

【1】Perry M D, Banks P S, Zweiback J, et al. Laser containing a distributed gain medium: U.S. 6,937,629[P]. 2005-8-30.

【2】Fu X, Liu Q, Li P, et al. Numerical simulation of 30-kW class liquid-cooled Nd∶YAG multi-slab resonator[J]. Optics Express, 2015, 23(14): 18458-18470.

【3】Fu X, Liu Q, Li P, et al. Direct-liquid-cooled Nd∶YAG thin disk laser oscillator[J]. Applied Physics B, 2013, 111(3): 517-521.

【4】Fu X, Li P, Liu Q, et al. 3 kW liquid-cooled elastically-supported Nd∶YAG multi-slab CW laser resonator[J]. Optics Express, 2014, 22(15): 18421-18432.

【5】Zhang Z, Liu Q, Nie M, et al. Experimental and theoretical study of the weak and asymmetrical thermal lens effect of Nd∶YLF crystal for σ and π polarizations[J]. Applied Physics B, 2015, 120(4): 689-696.

【6】Zheng D, Xu J, Liu W, et al. Spectral Analysis and Growth of Nd∶YLF Crystal[C]//Asia-Pacific Energy Equipment Engineering Research Conference, 2015.

【7】Pollak T M, Wing W F, Grasso R J, et al. CW laser operation of Nd∶YLF[J]. IEEE Journal of Quantum Electronics, 1982,18(2): 159-163.

【8】Murray J E. Pulsed gain and thermal lensing of Nd∶LiYF4[J]. IEEE Journal of Quantum Electronics, 1983, 19: 488-491.

【9】Ma Z, Gao J, Li D, et al. Thermal stress effects of the diode-end-pumped Nd∶YLF slab[J]. Optics Communications, 2008, 281(13): 3522-3526.

【10】Pollnau M, Hardman P J, Kern M A, et al. Upconversion-induced heat generation and thermal lensing in Nd∶YLF and Nd∶YAG[J]. Physical Review B, 1998, 58(24): 16076-16092.

【11】Ye Z, Liu C,Tu B, et al. Kilowatt-level direct-′refractive index matching liquid′-cooled Nd∶YLF thin disk laser resonator[J]. Optics Express, 2016, 24(2): 1758-1772.

【12】Ligrani P M, Niver R D. Flow visualization of Dean vortices in a curved channel with 40 to 1 aspect ratio[J]. Physics of Fluids, 1988, 31(12): 3605-3617.

【13】Mehta R D. The aerodynamic design of blower tunnels with wide-angle diffusers[J]. Progress in Aerospace Sciences, 1979, 18: 59-120.

【14】Han L S. Hydrodynamic entrance lengths for incompressible laminar flow in rectangular ducts[J]. Journal of Applied Mechanics, 1960, 27(3): 403-409.

【15】Moonen P, Blocken B, Carmeliet J. Indicators for the evaluation of wind tunnel test section flow quality and application to a numerical closed-circuit wind tunnel[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2007,95(9-11):1289-1314.

【16】Moonen P, Blocken B, Roels S, et al. Numerical modeling of the flow conditions in a closed-circuit low-speed wind tunnel[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2006, 94(10): 699-723.

【17】Mehta R D, Bradshaw P. Design rules for small low-speed wind tunnels[J]. Aeronautical Journal, 1979, 83(827): 443-449.

引用该论文

Ye Zhibin,Tu Bo,Wang Ke,Shang Jianli,Yu Yi,Deng Xiaolei. Design of Direct-Liquid-Cooled Thin-Disk Laser[J]. Chinese Journal of Lasers, 2018, 45(1): 0101012

叶志斌,涂波,王柯,尚建力,于益,邓小雷. 直接液体冷却薄片激光器设计[J]. 中国激光, 2018, 45(1): 0101012

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF