首页 > 论文 > 红外与激光工程 > 47卷 > 1期(pp:103011--1)

高能光纤激光器光束合成技术

Beam combining of high energy fibre lasers

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

高能光纤激光器光束合成技术是近年来高能激光器尤其是定向能源应用中的研究热点, 可突破单根单模光纤激光的输出功率限制, 为高功率高光束质量的激光武器应用奠定了理论基础。介绍了光纤激光非相干合成和相干合成的国内外研究现状, 给出了非相干合成技术中光束重叠和光谱合成的基本合成原理, 重点介绍了国内外多家研究机构光谱合成近年来所达到的技术水平; 介绍了国内外相干合成技术的最新研究进展, 对相干合成等效大口径激光阵列输出中几种不同的透射式相干合成阵列输出和反射式相干合成阵列输出的关键合成装置, 以及相干合成单一孔径输出中的核心光学元件进行详细分析。最后简要对比了高能光纤激光器光束相干合成技术和非相干合成技术的优缺点和应用范围。

Abstract

Beam combining of high energy fibre lasers is the research hotspot especially for the directed energy application in recent years, which can overcome the output power lever limits of one single-mode fibre laser, and establish the theoretical foundation for the application of laser weapons with high power and perfect beam quality. Research status of fibre laser incoherent combining and coherent combining were presented. In the section of incoherent combining, the combining principle and combining level of beam overlap and spectral beam combining were introduced. In the section of coherent combining, the key combining apparatus of transmission-type and reflection-type equivalent large aperture laser array output and optical element of single aperture output were analyzed in detail. The advantages and disadvantages and range of application of high power fibre laser beam coherent combining and incoherent combining were compared briefly.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN253

DOI:10.3788/irla201847.0103011

所属栏目:特约专栏-“光纤激光光束合成”

基金项目:吉林省与中国科学院科技合作高新技术产业化专项资金项目(2015SYHZ003)

收稿日期:2017-06-14

修改稿日期:2017-08-20

网络出版日期:--

作者单位    点击查看

程雪:中国科学院长春光学精密机械与物理研究所, 吉林 长春 130033中国科学院大学, 北京 100049
王建立:中国科学院长春光学精密机械与物理研究所, 吉林 长春 130033中国科学院紫金山天文台 中国科学院空间目标与碎片观测重点实验室, 江苏 南京 210008
刘昌华:中国科学院长春光学精密机械与物理研究所, 吉林 长春 130033中国科学院大学, 北京 100049

联系人作者:程雪(littlesnow@126.com)

备注:程雪(1988-), 女, 博士生, 主要从事激光光束合成方面的研究。

【1】Coffey V. High-energy lasers: new advances in defense applications [J]. Optics and Photonics News, 2014, 25(10): 28-35.

【2】Jones Q. Targets destroyed-at the speed of light [J]. Boeing Frontiers, 2014, 8(2): 32-35.

【3】Wang Huisheng, Liu Yang, Wei Shangfang, et al. Coherent combination of Michelson cavity fibre lasers [J]. Optics and Precision Engineering, 2009, 17(8): 1520-1527. (in Chinese)
王会升, 刘洋, 韦尚方, 等. 迈氏腔光纤激光器的相干合成[J]. 光学 精密工程, 2009, 17(8): 1520-1527.

【4】Dawson J W, Messerly M J, Beach R J, et al. Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power [J]. Optics Express, 2008, 16(17): 13240-13266.

【5】Zervas M N, Codemard C A. High power fiber lasers: A review [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(5): 219-241.

【6】Sprangle P, Penano J, Hafizi B. Beam combining and atmospheric propagation of high power lasers [R]. Washington, DC: Naval Research Laboratory Beam Physics Branch& Icarus Research, Inc., 2011.

【7】Staton R, Pawlak R. Laser weapon system (LAWS) adjunct to the close-in weapon system (CIWS) [R]. Dahlgren, VA: Naval Surface Warfare Center Dahlgren Division, Corporate Communication, 2012.

【8】Mohring B, Dietrich S, Tassini L, et al. High-energy laser activities at MBDA Germany [C]//SPIE Defense, Security, and Sensing. International Society for Optics and Photonics, 2013, 8733: 873304-1-9.

【9】Sprangle P A, Penano J R, Hafizi B, et al. Apparatus for incoherent combining of high power lasers for long-range directed-energy applications: US, US Patent7970040 [P]. 2011-06-28.

【10】Bourdon P, Lombard L, Durécu A, et al. Coherent combining of fiber lasers [C]//XXI International Symposium on High Power Laser Systems and Applications. International Society for Optics and Photonics, 2017, 10254: 1025402-1-10.

【11】Lowenthal D. Lasers & Sources Across the Spectrum [J]. SPIE′s Oemagazine, 2005, 4: 28.

【12】Divliansky I. Volume Bragg Gratings: Fundamentals and Applications in Laser Beam Combining and Beam Phase Transformations [M]//Naydenova I, Nazarova D, Babeva T.Holographic Materials and Optical Systems. London: InTech, 2017.

【13】Sevian A, Andrusyak O, Ciapurin I V, et al. Efficient power scaling of laser radiation by spectral beam combining [J]. Optics Letters, 2008, 33(4): 384-386.

【14】Divliansky I, Ott D, Anderson B, et al. Multiplexed volume Bragg gratings for spectral beam combining of high power fiber lasers [C]//Proc SPIE, 2012, 8237: 823705.

【15】Wirth C, Schmidt O, Tsybin I, et al. High average power spectral beam combining of four fiber amplifiers to 8.2 kW [J]. Optics Letters, 2011, 36(16): 3118-3120.

【16】Loftus T H, Liu A P, Hoffman P R, et al. 522W average power, spectrally beam-combined fiber laser with near-diffraction-limited beam quality [J]. Optics Letters, 2007, 32(4): 349-351.

【17】Honea E, Afzal R S, Savage-Leuchs M, et al. Spectrally beam combined fiber lasers for high power, efficiency, and brightness [C]//SPIE, 2013, 8601: 8601155.

【18】Honea E, Afzal R S, Savage-Leuchs M, et al. Advances in fiber laser spectral beam combining for power scaling [C]//SPIE, 2016, 9730: 97300Y.

【19】Madasamy P, Jander D R, Brooks C D, et al. Dual-grating spectral beam combination of high-power fiber lasers [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15(2): 337-343.

【20】Ma Yi, Yan Hong, Tian Fei, et al. Common aperture spectral beam combination of fiber lasers with 5kW power high-eficiency and high-quality output [J]. High Power Laser and Particle Beams, 2015, 27(4): 7-9. (in Chinese)
马毅, 颜宏, 田飞, 等. 光纤激光共孔径光谱合成实现5kW高效优质输出[J]. 强激光与粒子束, 2015, 27(4): 7-9.

【21】Ma Yi, Yan Hong, Peng Wanjing, et al. 9.6 kW common aperture spectral beam combination system based on multi-channel narrow-linewidth fiber lasers [J]. Chinese Journal of Lasers, 2016, 43(9): 0901009. (in Chinese)
马毅, 颜宏, 彭万敬, 等. 基于多路窄线宽光纤激光的9.6 kW共孔径光谱合成光源[J]. 中国激光, 2016, 43(9): 0901009.

【22】Zheng Ye, Yang Yifeng, Zhao Xiang, et al. Research progress on spectral beam combining technology of high-power fiber lasers [J]. Chinese Journal of Lasers, 2017, 44(2): 0201002. (in Chinese)
郑也, 杨依枫, 赵翔, 等. 高功率光纤激光光谱合成技术的研究进展[J]. 中国激光, 2017, 44(2): 0201002.

【23】Vorontsov M. Adaptive photonics phase-locked elements (APPLE): system architecture and wavefront control concept[C]//SPIE, 2005, 5895: 1-9.

【24】Zhang Yudong, Rao Changhui, Li Xinyang. Adaptive Optics and Laser Control [M]. Beijing: National Defense Industry Press, 2016. (in Chinese)
张雨东, 饶长辉, 李新阳. 自适应光学及激光操控[M]. 北京: 国防工业出版社, 2016.

【25】Fan Xinyan. Research of active phase-locking fiber laser coherent combining technique [D]. Harbin: Harbin Institute of Technology, 2010. (in Chinese)
范馨燕. 主动锁相光纤激光相干合成技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2010.

【26】Liu Zejin, Xu Xiaojun, Chen Jinbao, et al. Multi beams combiner with high duty ratio: CN Patent,ZL200920065407.7[P]. 2010-06-23. (in Chinese)
刘泽金, 许晓军, 陈金宝, 等. 多光束高占空比合束器: 中国专利, ZL200920065407.7[P]. 2010-06-23.

【27】Vorontsov M A, Weyrauch T, Beresnev L A, et al. Adaptive array of phase-locked fiber collimators: analysis and experimental demonstration [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15(2): 269-280.

【28】Jenna Brady. Army develops first-of-its kind phase-coherent fiber laser array system[EB/OL]. (2014-06-11)[2017-06-01].U.S. Army Research Laboratory, https://www. .army.mil/article/127565/Army_develops_first_of_its_kind_phase_ coherent_fiber_laser_ array_system/.

【29】Adaptive Fiber Array Technology[EB/OL].[2017-06-01]. http://www.optonicus.com/conformal_optical_systems/.

【30】Geng Chao, Zhang Xiaojun, Li Xinyang, et al. Structural design of adaptive fiber optics collimators [J]. Infrared and Laser Engineering, 2011, 40(9): 1682-1685. (in Chinese)
耿超, 张小军, 李新阳, 等. 自适应光纤光源准直器的结构设计[J]. 红外与激光工程, 2011, 40(9): 1682-1685.

【31】Wang Xiong, Wang Xiaolin, Zhou Pu, et al. Experimental research of tilt-tip wavefront and phase-locking control in fiber lasers coherent beam combining [J]. Infrared and Laser Engineering, 2013, 42(6): 1443-1447. (in Chinese)
王雄, 王小林, 周朴, 等. 光纤激光相干合成中倾斜和锁相同时控制的实验研究[J]. 红外与激光工程, 2013, 42(6): 1443-1447.

【32】Christensen S E, Koski O. 2-dimensional waveguide coherent beam combiner [C]//Advanced Solid-State Photonics. Optical Society of America, 2007.

【33】Uberna R, Bratcher A, Alley T G, et al. Coherent combination of high power fiber amplifiers in a two-dimensional re-imaging waveguide [J]. Optics Express, 2010, 18(13): 13547-13553.

【34】Cheung E, Ho J G, Goodno G D, et al. Diffractive-optics-based beam combination of a phase-locked fiber laser array [J]. Optics Letters, 2008, 33(4): 354-356.

【35】Redmond S M, Ripin D J, Yu C X, et al. Diffractive coherent combining of a 2.5 kW fiber laser array into a 1.9 kW Gaussian beam [J]. Optics Letters, 2012, 37(14): 2832-2834.

【36】Thielen P A, Ho J G, Burchman D A, et al. Two-dimensional diffractive coherent combining of 15 fiber amplifiers into a 600 W beam [J]. Optics Letters, 2012, 37(18): 3741-3743.

【37】Uberna R, Bratcher A, Tiemann B G. Coherent polarization beam combination [J]. IEEE Journal of Quantum Electronics, 2010, 46(8): 1191-1196.

【38】Uberna R, Bratcher A, Tiemann B G. Power scaling of a fiber master oscillator power amplifier system using a coherent polarization beam combination [J]. Applied Optics, 2010, 49(35): 6762-6765.

【39】Ma P, Zhou P, Ma Y, et al. Coherent polarization beam combining of four high power fiber amplifiers using single frequency dithering technique [J]. IEEE Photonics Technology Letters, 2012, 24(12): 1024-1026.

【40】Ma P F, Zhou P, Su R T, et al. Coherent polarization beam combining of eight fiber lasers using single-frequency dithering technique [J]. Laser Physics Letters, 2012, 9(6): 456-458.

【41】Liu Zejin, Zhou Pu, Ma Pengfei, et al. 4-channel polarize coherent combination of high-power narrow-linewidth linear polarization fiber amplifiers with 5 kW high intensity laser output [J]. Chinese Journal of Lasers, 2017, 44(4): 0415004. (in Chinese)
刘泽金, 周朴, 马鹏飞,等. 4路高功率窄线宽、线偏振光纤放大器相干偏振合成实现5 kW级高亮度激光输出[J]. 中国激光, 2017, 44(4): 0415004.

引用该论文

Cheng Xue,Wang Jianli,Liu Changhua. Beam combining of high energy fibre lasers[J]. Infrared and Laser Engineering, 2018, 47(1): 0103011

程雪,王建立,刘昌华. 高能光纤激光器光束合成技术[J]. 红外与激光工程, 2018, 47(1): 0103011

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF