首页 > 论文 > 红外与激光工程 > 47卷 > 1期(pp:104003--1)

同轴全反红外光学系统自身热辐射测量方法

Measurement method of self-thermal radiation for coaxial total reflection infrared optical system

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

对红外光学系统自身热辐射进行了评估方式、计算方法和实验测量研究。首先, 介绍并比较了两种自身热辐射的评估方式, 即有效发射率和等效黑体辐射温度; 其次, 详细介绍了基于实验结果的自身热辐射的等效黑体辐射温度的计算方法; 最后, 利用自身热辐射测试平台, 对同轴全反型红外光学系统的自身热辐射进行测量实验, 并进行了误差分析计算。结果表明: 自身热辐射的辐射出射度与光学系统有效F数的平方成正比关系, 与透过率成反比关系, 和自身热辐射的灰度输出与积分时间之间的线性系数成正比关系, 计算出该同轴全反型红外光学系统的自身热辐射的等效黑体辐射温度为217.3 K, 经测量和计算出背景模拟板的辐射亮度误差为8.5%, 自身热辐射的灰度输出与积分时间的线性拟合系数的相对不确定度为0.2%, 并说明探测器在5×10-4 Pa中具有良好的稳定性。

Abstract

Infrared optical system self-thermal radiation was evaluated, calculated and measured. Firstly, it introduced and compared the two kinds of the thermal radiation way of evaluation, effective emissivity and equivalent blackbody radiation temperature; Secondly, the way based on experiment of calculation for equivalent blackbody radiation temperature of self-thermal radiation was introduced in detail; Finally, the coaxial reflection infrared optical system thermal radiation was measured by using self-thermal radiation test platform and error analysis was carried out. The result show that self-thermal radiant exitance is proportional to the square of effectively F number of optical system and the linear coefficient for the output gray of self-thermal radiation between the integral time, is inversely proportional to transmittance. It shows that the equivalent blackbody radiation temperature for self-thermal radiation of coaxial reflection infrared optical system is 217.3 K. Error for radiation form background simulation board is 8.5%, the relative uncertainty of linear coefficient for the output gray of self-thermal radiation between integral time is 0.2%. It shows that infrared detector has a good stability under 5×10-4 Pa.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN219

DOI:10.3788/irla201847.0104003

所属栏目:红外技术及应用

收稿日期:2017-06-01

修改稿日期:2017-08-15

网络出版日期:--

作者单位    点击查看

余菲:中国科学院光电技术研究所, 四川 成都 610209中国科学院大学, 北京 100049
任栖锋:中国科学院光电技术研究所, 四川 成都 610209
李华:中国科学院光电技术研究所, 四川 成都 610209
孙威:中国科学院光电技术研究所, 四川 成都 610209
黄智强:中国科学院光电技术研究所, 四川 成都 610209

联系人作者:余菲(falcon_yufei@126.com)

备注:余菲(1990-), 男, 硕士生, 主要从事红外辐射方面的研究。

【1】ST Clair Dinger Ann. Thermal emissivity analysis of a GEMINI 8-meter telescopes design[C]//SPIE, 1993, 1753: 183-188.

【2】Li Yan, Liu Jianfeng. Research on integrative suppression of internal and external stray light in infrared optical remote sensor[J]. Acta Optica Sinica, 2013, 33(9): 0928002. (in Chinese)
李岩, 刘剑锋. 红外光学遥感器内部杂散与外部杂散光的综合抑制研究[J]. 光学学报, 2013, 33(9): 0928002.

【3】Zhong Xing, Zhang Lei, Jin Guang. Stray light removing of reflective optical system [J]. Infrared and Laser Engineering, 2008, 37(2): 316-318. (in Chinese)
钟兴, 张雷, 金光. 反射光学系统杂散光的消除[J]. 红外与激光工程, 2008, 37(2): 316-318.

【4】Li Gang. Research about space-based IR-optical system for space object detection[D]. Beijing: University of Chinese Academy of Sciences, 2013. (in Chinese)
李刚. 空间目标天基红外探测光学系统研究 [D]. 北京: 中国科学院大学, 2013.

【5】Zhou Jun, Li Juan, Wang Qingfeng, et al. Optimized design of infrared opto-mechanical systems based on the spontaneous emission suppression [J]. Acta Optica Sinica, 2015, 35(3): 0322003. (in Chinese)
周军,李娟,王庆丰, 等. 基于自发辐射抑制的红外光机系统优化设计[J]. 光学学报, 2015, 35(3): 0322003.

【6】Yao Xiuwen, Xiao Jing, Zeng Shuguang, et al. Analysis and suppression of self-generated thermal emission in infrared optical systems [J]. Laser & Optoelectronics Progress, 2009, 36(7): 1273-1276. (in Chinese)
姚秀文,肖静, 曾曙光, 等. 红外光学系统自身杂散辐射分析及抑制[J]. 激光与光电子学进展, 2009, 36(7): 1273-1276.

【7】Chang Songtao, Sun Zhiyuan, Zhang Yaoyu, et al. Internal stray radiation measurement for cooled infrared imaging systems [J]. Acta Physica Sinica, 2015, 64(5): 050702. (in Chinese)
常松涛, 孙志远, 张尧禹, 等. 制冷型红外成像系统内部杂散辐射测量方法[J]. 物理学报, 2015, 64(5): 050702.

【8】Luo Maojie. Research on response characteristics of FPA infrared radiation[D]. Beijing: University of Chinese Academy of Sciences, 2013. (in Chinese)
罗茂捷. FPA红外辐射响应特性研究[D]. 北京: 中国科学院大学, 2012.

【9】Wang Jianjun, Huang Chen, Li Jianting. Calibration technology of infrared radiation measurement for space object [J]. Infrared and Laser Engineering, 2016, 45(4): 0404002. (in Chinese)
王建军, 黄晨, 李舰艇. 空间目标红外辐射测量系统标定技术[J]. 红外与及激光工程, 2016, 45(4): 0404002.

【10】Yang Ciyin, Zhang Jianping, Cao Lihua. Infrared radiation measurement based on real-time correction[J]. Journal of Infrared and Millim Waves, 2011, 30(3): 284-288. (in Chinese)
杨词银, 张建萍, 曹立华. 基于实时标校的目标红外辐射测量新方法[J]. 红外与毫米波学报, 2011, 30(3): 284-288.

【11】Yang Ciyin, Cao Lihua. Radiation calibration and error analysis for a large-aperture infrared opto-electric system[J]. Infrared and Laser Engineering, 2011, 40(9): 1624-1628. (in Chinese)
杨词银, 曹立华. 大口径红外光电系统辐射定标及误差分析[J]. 红外与激光工程, 2011, 40(9): 1624-1628.

引用该论文

Yu Fei,Ren Qifeng,Li Hua,Sun Wei,Huang Zhiqiang. Measurement method of self-thermal radiation for coaxial total reflection infrared optical system[J]. Infrared and Laser Engineering, 2018, 47(1): 0104003

余菲,任栖锋,李华,孙威,黄智强. 同轴全反红外光学系统自身热辐射测量方法[J]. 红外与激光工程, 2018, 47(1): 0104003

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF