首页 > 论文 > 光子学报 > 47卷 > 2期(pp:230002--1)

用于中红外甲烷检测的压强测量与补偿

Pressure Measurement and Compensation for Mid-infrared Methane Detection

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

利用一个波长为3.291 μm的室温连续、带间级联激光器和一个有效光程长为54.6 m的多通池, 研究了用于中红外甲烷检测的压强测量及补偿技术。通过对测得的甲烷直接吸收光谱信号进行洛伦兹吸收线型拟合, 测量了吸收池内气体压强并补偿了压强变化对甲烷浓度的影响。利用浓度为2.1×10-6的甲烷气体样品, 在1.33×104~10.64×104 Pa的范围内进行了压强标定; 对压强为9.31×104 Pa、浓度为2.1×10-6甲烷气体样品的压强测量结果进行阿仑方差分析, 结果表明, 当积分时间为2.2 s时, 压强的测量精度约为219.5 Pa。在1.33×104、3.99×104和6.65 ×104 Pa三种不同压强条件下, 对浓度分别为1.0×10-6、1.2×10-6、1.4×10-6、1.6×10-6、2.1×10-6甲烷气体样品的浓度和压强做了15组测量, 验证了所给出的压强测量和补偿技术的可行性。

Abstract

A pressure measurement and compensation technique was studied by employing a 3.291 μm Continuous Wave (CW) Interband Cascade Laser (ICL) and a dense-patterned Multipass Gas Cell (MPGC) with an effective optical path length of 54.6 m. The pressure inside the MPGC was measured based on direct Lorentzian absorption line fitting on the measured absorption spectral signal of CH4, and then pressure compensation was made on the masured CH4 concentration. Pressure calibration was performed from 1.33×104 Pa to 10.64×104 Pa using a 2.1×10-6 CH4 sample. An Allan deviation analysis of the measured pressure of a 2.1×10-6 CH4 at 9.31×104 Pa pressure indicates a measurement precision of ~219.5 Pa with a 2.2 s averaging time. Fiveteen groups of pressure/concentration measurements of 1.0×10-6, 1.2×10-6, 1.4×10-6, 1.6×10-6 and 2.1×10-6 CH4 samples at different pressures of 1.33×104, 3.99×104 and 6.65×104 Pa were performed, and the results proved the feasibility of the proposed pressure measurement and compensation technique.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TH83

DOI:10.3788/gzxb20184702.0230002

基金项目:The National Key R&D Program of China (Nos. 2016YFD0700101, 2016YFC0303902, 2017YFB0402800), National Natural Science Foundation of China (Nos. 61775079, 61627823, 61307124), Science and Technology Department of Jilin Province of China (Nos. 20140307014SF, 2017C027), and Changchun Municipal Science and Technology Bureau (No. 14KG022)

收稿日期:2017-08-20

修改稿日期:2017-10-17

网络出版日期:--

作者单位    点击查看

刘志伟:集成光电子学国家重点联合实验室吉林大学实验区, 吉林大学 电子科学与工程学院, 长春 130012
李梓文:集成光电子学国家重点联合实验室吉林大学实验区, 吉林大学 电子科学与工程学院, 长春 130012
李亚飞:集成光电子学国家重点联合实验室吉林大学实验区, 吉林大学 电子科学与工程学院, 长春 130012
郑文雪:集成光电子学国家重点联合实验室吉林大学实验区, 吉林大学 电子科学与工程学院, 长春 130012
郑传涛:集成光电子学国家重点联合实验室吉林大学实验区, 吉林大学 电子科学与工程学院, 长春 130012
王一丁:集成光电子学国家重点联合实验室吉林大学实验区, 吉林大学 电子科学与工程学院, 长春 130012

联系人作者:刘志伟(zhiwei16@mails.jlu.edu.cn)

备注:LIU Zhi-wei (1993-), male, M.S. degree candidate, mainly focuses on infrared gas sensing technology.

【1】KARION A, SWEENEY C, PETRON G,et al. Methane emissions estimate from airborne measurements over a western United States natural gas field[J]. Geophysical Research Letters, 2013, 40(16): 4393-4397.

【2】MILLER S M, WOFSY S C, MICHALAK A M, et al. Anthropogenic emissions of methane in the United States[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(50): 20018-20022.

【3】BRANDT A R, HEATH G A, KORT E A, et al. Methane leaks from north american natural gas systems[J]. Science, 2014, 343(6172): 733-735 .

【4】SCHWIETZKE S, GRIFFIN W M, MATTHEWS H S, et al. Natural gas fugitive emissions rates constrained by global atmospheric methane and ethane[J]. Environmental Science & Technology, 2014, 48(14): 7714-7722.

【5】LANCASTER D G, WEIDNER R, RICHTER D, et al. Compact CH4 sensor based on difference frequency mixing of diode lasers in quasi-phasematched LiNbO3[J]. Optics Communications, 2000, 175(4-6): 461-468.

【6】LANCASTER D G, DAWES J M. Methane detection with a narrow-band source at 3.4 μm based on a Nd: YAG pump laser and a combination of stimulated Raman scattering and difference frequency mixing[J]. Applied Optics, 1996, 35(21): 4041-4045.

【7】FISCHER C, SIGRIST M W. Trace-gas sensing in the 3.3 μm region using a diode-based difference-frequency laser photoacoustic system[J]. Applied Physics B: Lasers and Optics, 2002, 75(2-3): 305-310.

【8】RICHTER D, LANCASTER D G, CURL R F, et al. Compact mid-infrared trace gas sensor based on difference-frequency generation of two diode lasers in periodically poled LiNbO3[J]. Applied Physics B: Lasers and Optics, 1998, 67(3): 347-350.

【9】PETROY K P, WALTMAN S, DLUGOKANCKY E J,et al. Precise measurement of methane in 3.4-μm difference-frequency generation in PPLN[J]. Applied Physics B: Lasers and Optics, 1997, 64(5): 567-572.

【10】SILVER J A. Frequency-modulation spectroscopy for trace species detection: theory and comparison among experimentalmethods[J]. Applied Optics, 1992, 31(6): 707-717.

【11】WERLE P, Review of recent advances in semiconductor laser based gas monitors[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 1998, 54(2): 197-236.

【12】SCHILT S, THEVENAZ L, ROBERT P. Wavelength modulation spectroscopy: combined frequency and intensity laser modulation[J]. Applied Optics, 2003, 42(33): 6728-6738.

【13】HE Q, DANG P, LIU Z, et al. TDLAS-WMS based near-infrared methane sensor system using hollow-core photonic crystal fiber as gas-chamber[J]. Optical and Quantum Electronics, 2017, 49(3): 115.

【14】YE W, LI C, ZHENG C,et al. Mid-infrared dual-gas sensor for simultaneous detection of methane and ethane using a single continuous-wave interband cascade laser[J]. Optics Express, 2016, 24(15): 16973-16985.

【15】JOULLIE A, CHRISTOL P, GaSb-based mid-infrared 2-5 μm laser diodes[J]. Comptes Rendus Physique, 2003, 4(6): 621-637.

【16】MOTYKA M, SEK G, RYCZKO K, et al. Optical properties of GaSb-based type II quantum wells as the active region of midinfrared interband cascade lasers for gas sensing applications[J]. Applied Physics Letters, 2009, 94(25): 251901.

【17】VURGAFTMAN I, BEWLEY W W, CANEDY C L, et al. Rebalancing of internally generated carriers for mid-infrared interband cascade lasers with very low power consumption[J]. Nature Communications, 2011, 2(1): 585.

引用该论文

LIU Zhi-wei,LI Zi-wen,LI Ya-fei,ZHENG Wen-xue,ZHENG Chuan-tao,WANG Yi-ding. Pressure Measurement and Compensation for Mid-infrared Methane Detection[J]. ACTA PHOTONICA SINICA, 2018, 47(2): 0230002

刘志伟,李梓文,李亚飞,郑文雪,郑传涛,王一丁. 用于中红外甲烷检测的压强测量与补偿[J]. 光子学报, 2018, 47(2): 0230002

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF