光子学报, 2018, 47 (2): 0223002, 网络出版: 2018-01-30   

臂型网格结构增强石墨烯电调制太赫兹透射

Graphene Electrically Modulating Terahertz Transmission Enhanced by Arm Type Metal Mesh Structure
作者单位
1 长春理工大学 光电工程学院, 长春130022
2 中国科学院重庆绿色智能技术研究院 跨尺度制造技术重庆市重点实验室, 重庆 400714
3 长江师范学院 电子信息工程学院, 重庆 400814
摘要
为提高单层石墨烯薄膜电控太赫兹调制器的调制深度, 提出一种臂型金属网格微结构与石墨烯结合的太赫兹波透射调制器件.通过臂型金属网格结构激发的共振耦合场增强石墨烯与太赫兹波的相互作用, 使石墨烯在外加电压调制下对太赫兹波透射幅度的调制深度获得大幅提升.通过有限元仿真分析了金属结构参数对石墨烯与太赫兹波相互作用增强规律的影响, 理论结果表明, 臂型网格结构使石墨烯对太赫兹波透射幅度调制深度从7.7%提升到了28.2%.在理论结果的基础上, 基于光刻工艺完成了器件的结构制作, 实验测试中获得了24%的太赫兹幅度调制深度, 且调制深度曲线与理论仿真规律基本一致.
Abstract
In order to improve the modulation depth of the single layered graphene electronic controlled terahertz modulator, a terahertz transmission modulator with an arm type metal mesh structure combined with graphene is proposed. The resonant coupling field excited by the arm type metal mesh structure enhances the interaction between graphene and terahertz wave, which greatly improves the modulation depth of the terahertz modulator when the modulation voltage is applied. The influences on the interaction enhancement of graphene and terahertz wave at different metal structure parameters are analyzed by finite element method simulation. The theoretical results indicate that the arm type metal grid structure increases the modulation depth from 7.7% to 28.2%. On the basis of the theoretical results, the device is fabricated with the photolithography process. The 24% modulation depth is obtained in the experimental measurements, and the experimental modulation depth curve is basically in agreement with the theoretical simulation.

邹仪宣, 董连和, 夏良平, 刘松林. 臂型网格结构增强石墨烯电调制太赫兹透射[J]. 光子学报, 2018, 47(2): 0223002. ZOU Yixuan, DONG Lianhe, XIA Liangping, LIU Songlin. Graphene Electrically Modulating Terahertz Transmission Enhanced by Arm Type Metal Mesh Structure[J]. ACTA PHOTONICA SINICA, 2018, 47(2): 0223002.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!