首页 > 论文 > 光子学报 > 47卷 > 3期(pp:316001--1)

氮钝化对Te掺杂GaSb材料光学性质的影响

Effect of Nitrogen Passivation on Optical Properties of Te-doped GaSb

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

利用等离子体增强原子层沉积系统, 使用氮等离子体对Te掺杂GaSb的表面进行刻蚀, 改善样品的发光特性.在室温下(300 K), 发光强度提高了4倍.在低温光谱测试中, 发现了由Te掺杂导致的TeSb施主缺陷相关的发光峰, 峰位位置在0.743 eV处; 此外, 带边发光峰位随温度变化从0.796 eV移动到0.723 eV.对比室温和低温光谱, 发现当N等离子体刻蚀功率为100 W时, Te掺杂GaSb的最佳刻蚀周期是200周期; 并且氮钝化没有改变Te掺杂GaSb的发光机制, 只是提高了样品的辐射复合效率.

Abstract

Using precisely atomic layer etching technology, surface etching process of Te-doped GaSb surface by nitrogen plasma in the plasma enhanced atomic layer deposition system, which can improve emission intensity. The emission intensity increased by a factor of 4 at room temperature.With low temperature photoluminescence measurement, the peak associated with TeSb donor defects due to Te doping was found, with a peak position of 0.743 eV. In addition, the changing of band edge emission with temperature from 0.796 eV to 0.723 eV was also observed. By comparing the room temperature spectra and low temperature spectra,when the nitrogen plasma etching power was 100 W, the best etching cycle of Te-GaSb was 200 cycles. Moreover, the nitrogen passivation does not changed the emission mechanism of Te-GaSb, but improves the radiative recombination efficiency of the sample.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O433.4;O472.3

DOI:10.3788/gzxb20184703.0316001

基金项目:国家自然科学基金(Nos.61404009, 61474010, 61574022, 61504012, 61674021, 11674038)和吉林省科技发展计划(Nos.20160519007JH, 20160101255JC, 20160204074GX, 20170520117JH)资助

收稿日期:2017-09-22

修改稿日期:2017-11-15

网络出版日期:--

作者单位    点击查看

容天宇:长春理工大学 高功率半导体激光国家重点实验室, 长春 130022
房丹:长春理工大学 高功率半导体激光国家重点实验室, 长春 130022
谷李彬:长春理工大学 高功率半导体激光国家重点实验室, 长春 130022
方铉:长春理工大学 高功率半导体激光国家重点实验室, 长春 130022
王登魁:长春理工大学 高功率半导体激光国家重点实验室, 长春 130022
唐吉龙:长春理工大学 高功率半导体激光国家重点实验室, 长春 130022
王新伟:长春理工大学 高功率半导体激光国家重点实验室, 长春 130022
王晓华:长春理工大学 高功率半导体激光国家重点实验室, 长春 130022

联系人作者:容天宇(july9426@sina.com)

备注:容天宇(1993-), 男, 硕士研究生, 主要研究方向为纳米材料与低维物理.

【1】JEPPSSON M, DICK K A, WAGNER J B, et al. GaAs/GaSb nanowire heterostructures grown by MOVPE[J]. Journal of Crystal Growth, 2008, 310(18): 4115-4121.

【2】YANG Zai-xing, HAN Ning, FANG Ming, et al. Surfactant-assisted chemical vapour deposition of high-performance small-diameter GaSb nanowires[J]. Nature Communications, 2014, 5: 5249.

【3】LIAO Yong-ping, ZHANG Yu, XING Jun-liang, et al.GaSb-based quantum wells 2μm high power laser diode[J]. Chinese Journal of Lasers, 2015(B09): 35-38.
廖永平, 张宇, 邢军亮, 等. 锑化镓基量子阱2μm大功率激光器[J]. 中国激光, 2015(B09): 35-38.

【4】JI Hai-ming, LIANG Bao-lai, SIMMONDS P J, et al. Hybrid type-I InAs/GaAs and type-II GaSb/GaAs quantum dot structure with enhanced photoluminescence[J]. Applied Physics Letters, 2015, 106(10): 103104.

【5】WANG Yue, LIU Guo-jun, XING Jun-liang,et al. Study of the ohmic contact of gasb-based semiconductor laser[J].Chinese Journal of Lasers, 2012, 39(1): 54-57.
王跃, 刘国军, 李俊承, 等.GaSb基半导体激光器功率效率研究[J]. 中国激光, 2012, 39(1): 54-57.

【6】KLIPSTEIN P C, LIVNEH Y, GLOZMAN A, et al. Modeling InAs/GaSb and InAs/InAsSb superlattice infrared detectors[J]. Journal of Electronic Materials, 2014, 43(8): 2984-2990.

【7】DEL ALAMO J A. Nanometre-scale electronics with III-V compound semiconductors[J]. Nature, 2011, 479(7373): 317-323.

【8】HOFFMANN J, LEHNERT T, HOFFMANN D, et al. Advantages and disadvantages of sulfur passivation of InAs/GaSb superlattice waveguide photodiodes[J]. Semiconductor Science and Technology, 2009, 24(6): 065008

【9】FANG Dan, FANG Xuan, LI Yong-feng, et al. Photoluminescence properties of the GaSb nanostructures irradiated by femtosecond laser[J]. Nanoscience and Nanotechnology Letters, 2015, 7(2): 117-120.

【10】ZHAO Lian-feng, TAN Zhen, BAI Rong-xu, et al. Effects of sulfur passivation on GaSb metal-oxide-semiconductor capacitors with neutralized and unneutralized (NH4)2S solutions of varied concentrations[J]. Applied Physics Express, 2013, 6(5): 056502.

【11】SALIHOGLU O. Atomic layer deposited passivation layers for superlattice photodetectors[J]. Journal of Vacuum Science & Technology B, 2014, 32(5): 051201

【12】CHEN Fang, LIU Guo-jun, WEI Zhi-peng, et al. Study on the properties of gallium antimonide surface passivatied with S2Cl2 solution[C]. Optoelectronics and Microelectronics (ICOM), 2012 International Conference on IEEE, 2012: 21-24.

【13】XU Run-shen, TAKOUDIS C G. Chemical passivation of GaSb-based surfaces by atomic layer deposited ZnS using diethylzinc and hydrogen sulfide[J]. Journal of Vacuum Science & Technology A, 2012, 30(1): 01A145

【14】RUPPALT L B, CLEVELAND E R, CHAMPLAIN J G, et al. Electronic properties of atomic-layer-deposited high-k dielectrics on GaSb (001) with hydrogen plasma pretreatment[J]. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, 2015, 33(4): 04E102.

【15】ASCAZUBI R, SHNEIDER C, WILKE I, et al. Enhanced terahertz emission from impurity compensated GaSb[J]. Physical Review B, 2005, 72(4): 045328.

【16】WANG Bo, WEI Zhi-peng, LI Mei, et al. Tailoring the photoluminescence characteristics of p-type GaSb: the role of surface chemical passivation[J]. Chemical Physics Letters, 2013, 556: 182-187.

【17】LEE M, NICHOLAS D J, SINGER K E, et al. A photoluminescence and Hall-effect study of GaSb grown by molecular-beam epitaxy[J]. Journal of Applied Physics, 1986, 59(8): 2895-2900.

【18】IYER S, SMALL L, HEGDE S M, et al. Low-temperature photoluminescence of Te-doped GaSb grown by liquid phase electroepitaxy[J]. Journal of Applied Physics, 1995, 77(11): 5902-5909.

【19】LUCKERT F, HAMILTON D I, YAKUSHEV M V, et al. Optical properties of high quality Cu2ZnSnSe4 thin films[J]. Applied Physics Letters, 2011, 99(6): 062104.

【20】GE Xiao-tian, WANG Deng-kui, GAO Xian, et al. Localized states emission in type-I GaAsSb/AlGaAs multiple quantum wells grown by molecular beam epitaxy[J]. Rapid Research Letters, 2017, 11(3): 1770314.

【21】FANG Xuan, WEI Zhi-peng, CHEN Rui, et al. Influence of exciton localization on the emission and ultraviolet photoresponse of ZnO/ZnS core-shell nanowires[J]. ACS Applied Materials & Interfaces, 2015, 7(19): 10331-10336.

【22】CARDONA M, THEWALT M L W. Isotope effects on the optical spectra of semiconductors[J]. Reviews of Modern Physics, 2005, 77(4): 1173.

【23】VARSHNI Y P. Temperature dependence of the energy gap in semiconductors[J]. Physica, 1967, 34(1): 149-154.

【24】XULiu-yang, GAO Xin, YUAN Xu-ze, et al. Nitrogen-plasma passivation of GaAs semiconductor surface[J]. Chinese Journal of Luminescence, 2016, 37(4): 428-431.
许留洋, 高欣, 袁绪泽, 等. GaAs半导体表面的等离子氮钝化特性研究[J]. 发光学报, 2016, 37(4): 428-431.

【25】SIETHOFF H, AHLBOM K. The dependence of the Debye temperature on the elastic constants[J]. Physica Status Solidi, 1995, 190(1): 179-191.

引用该论文

RONG Tian-yu,FANG Dan,GU Li-bin,FANG Xuan,WANG Deng-kui,TANG Ji-long,WANG Xin-wei,WANG Xiao-hua. Effect of Nitrogen Passivation on Optical Properties of Te-doped GaSb[J]. ACTA PHOTONICA SINICA, 2018, 47(3): 0316001

容天宇,房丹,谷李彬,方铉,王登魁,唐吉龙,王新伟,王晓华. 氮钝化对Te掺杂GaSb材料光学性质的影响[J]. 光子学报, 2018, 47(3): 0316001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF