首页 > 论文 > 激光技术 > 42卷 > 1期(pp:53-59)

316L激光熔覆质量预测及路径选择研究

Study on quality prediction and path selection of 316L laser cladding

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

为了避免激光熔覆时熔覆层边界处产生过烧和塌陷等缺陷, 基于热传导理论分析了基体不同位置的散热差异, 采用数值计算方法分析扫描路径对温度场的影响, 在激光功率1000W、扫描速率5mm/s、送粉量9.15g/min、扫描间距1.5mm、基体尺寸40mm×30mm×7mm时, 同向熔覆和异侧熔覆比反向熔覆和同侧熔覆边界熔池温度分别降低约300℃和500℃, 预测了反向熔覆和同侧熔覆的过烧和塌陷区域并进行了实验验证。结果表明, 扫描路径对边界过烧和塌陷的影响很大, 同向熔覆和异侧熔覆可以在保证高加工效率、材料利用率以及合理工艺参量的同时提高边界熔覆质量; 异侧熔覆可以更好地平衡热量累积与散热间的关系, 使熔覆层边界晶粒细密、内部组织分布均匀、性能更加优良。此项研究对提高激光熔覆层质量是有帮助的。

Abstract

In order to avoid defects such as overburning and collapsing at the boundary of laser cladding layer, difference of heat dissipation at different positions of the substrate was analyzed based on the theory of heat conduction. The influence of scanning path on temperature distribution was studied by numerical calculation. With the parameters of laser power 1000W, scanning speed 5mm/s, powder feeding quantity 9.15g/min, scanning interval 1.5mm and substrate size 40mm×30mm×7mm, molten pool temperature of boundary under the same direction cladding and different side cladding is about 300℃ and 500℃ lower than that under different direction cladding and the same side cladding respectively. Overburning and collapsing regions under different direction cladding and the same side cladding are predicted and experimentally verified. The results show that the scanning path has a great influence on the overburning and collapsing of boundary. The same direction cladding and different side cladding can improve the cladding quality of boundary without changing machining efficiency, material utilization ratio and the rationality of process parameters. Different side cladding can balance the relationship between heat accumulation and heat dissipation better, which can refine the grain of boundary, make internal microstructure uniform and increase the performance of cladding layer. This study is helpful to improve the quality of laser cladding layer.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TG156.99

DOI:10.7510/jgjs.issn.1001-3806.2018.01.011

所属栏目:激光与光电子技术应用

收稿日期:2017-03-22

修改稿日期:2017-05-31

网络出版日期:--

作者单位    点击查看

徐海岩:大连理工大学 机械工程学院, 大连 116024
李 涛:大连理工大学 机械工程学院, 大连 116024
李海波:大连理工大学 机械工程学院, 大连 116024
王鑫林:大连理工大学 机械工程学院, 大连 116024
张洪潮:大连理工大学 机械工程学院, 大连 116024

联系人作者:李涛(litao_dlut@163.com)

备注:徐海岩(1993-), 男, 硕士研究生, 主要从事激光熔覆方面的研究。

【1】JI Sh Q, LI P, ZENG X Y. Microstructure and mechanical property analyses of themetal parts direct fabricated by laser cladding [J]. Laser Technology, 2006, 30(2): 130-132(in Chinese).

【2】SON S, KIM S, LEE K H. Path planning of multi-patched freeform surfaces for laser scanning[J]. The International Journal of Advanced Manufacturing Technology, 2003, 22(5): 424-435.

【3】BIAN H Y, YANG G, LI Y, et al. Grouping parallel scan path generating method of metal laser deposition shaping[J]. Journal of Mechanical Engineering, 2013, 49(11): 171-176(in Chinese).

【4】BIAN H Y, FAN Q Ch, LI Y, et al. Scan path generating method based on temperature subarea of laser deposition shaping[J]. Journal of Mechanical Engineering, 2015, 51(24): 57-62(in Chinese).

【5】DENG Sh Sh, YANG Y Q, LI Y, et al. Planning of area-partition scanning path and its effect on residual stress of SLM molding parts[J]. Chinese Journal of Lasers, 2016, 43(12): 1202003(in Chin-ese).

【6】CHEN L, XIE P L. Research of preventing the edges of tooth surface from collapsing in laser-cladding process[J]. Laser Technology, 2007, 31(5): 518-521(in Chinese).

【7】QUAN X M, DING L, WEI X. Analysis of temperature field of laser cladding Ni-based alloy[J]. Laser Technology, 2013, 37(4): 547-550(in Chinese).

【8】XU B. The geometrical features of single laser cladding for the green remanufacturing [D]. Nanjing : Nanjing University of Aeronautics and Astronautics, 2011: 13-15 (in Chinese).

【9】ZHAO H L. Numerical simulation of temperature field and flow field during laser cladding of molten pool[D]. Qinhuangdao: Yanshan University, 2013: 15-17(in Chinese).

【10】ZHANG K, LIU W J, SHANG X F. Research on the processing experiments of laser metal deposition shaping[J]. Optics & Laser Technology, 2007, 39(3): 549-557.

【11】XIE H M. Process study and profile prediction on laser cladding of titanium alloys[D]. Dalian: Dalian University of Technology, 2014: 45-50(in Chinese).

【12】ZHANG Zh, FARAHMAND P, KOVACEVIC R. Laser cladding of 420 stainless steel with molybdenum on mild steel A36 by a high power direct diode laser[J]. Materials & Design, 2016, 109(5): 686-699.

【13】TABERNERO I, LAMIKIZ A, MARTINEZ S, et al. Modelling of energy attenuation due to powder flow-laser beam interaction during laser cladding process[J]. Journal of Materials Processing Technology, 2012, 212(2): 516-522.

【14】LIN J. Temperature analysis of the powder streams in coaxial laser cladding[J]. Optics & Laser Technology, 1999, 31(8): 565-570.

【15】LIU H, YU G, HE X L, et al. Three-dimensional numerical simulation of transient temperature field and coating geometry in powder feeding laser cladding[J].Chinese Journal of Lasers, 2013, 40(12): 1203007(in Chinese).

引用该论文

XU Haiyan,LI Tao,LI Haibo,WANG Xinlin,ZHANG Hongchao. Study on quality prediction and path selection of 316L laser cladding[J]. Laser Technology, 2018, 42(1): 53-59

徐海岩,李 涛,李海波,王鑫林,张洪潮. 316L激光熔覆质量预测及路径选择研究[J]. 激光技术, 2018, 42(1): 53-59

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF