首页 > 论文 > 激光技术 > 42卷 > 1期(pp:72-77)

T矩阵方法计算双层球形粒子的受力

Calculation of trapping force on double-layer spherical particles using T matrix method

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

为了分析聚焦光束对多层粒子的捕获效率, 结合矢量衍射积分、T矩阵方法以及Maxwell应力张量积分, 通过理论推导给出了双层球形粒子的T矩阵的详细表达式, 并对双层球形粒子在聚焦光场中的受力进行了数值计算, 详细分析了内层折射率和内层尺寸对光场捕获效率的影响。结果表明, 只有内层折射率在一定范围内, 聚焦光束对双层球形粒子才具有捕获作用, 随着内层折射率增加, 最大后向捕获效率先增加后减小至零, 对于空心粒子, 内层尺寸越大, 聚焦光束对粒子的捕获作用越弱, 且平面波的捕获作用比高斯光束更强。此双层球形粒子的受力计算可以拓展到多层的复杂粒子的情形。

Abstract

In order to analyze the trapping efficiency of multi-layer particles in a focused beam, the T matrix of the double-layer spherical particle was deduced. The trapping force on double-layer spherical particles was numerically calculated by means of the vector diffraction integral combining the T matrix method and the Maxwell stress tensor integral. Effect of the refractive index and size of the inner layer on trapping efficiency was discussed in detail. The focused beam can trap the double-layer spherical particles only when the refractive index of the inner layer is appropriate. The maximum backward trapping efficiency will increase at first and decrease to zero finally when the refractive index increases. For hollow particles, the bigger the hollow is, the weaker the trap is. Besides, the trap formed by plane wave is stronger than Gaussian beam. The calculation method of the force on double-layer spherical particles can be expanded to the case of multilayer complex particles.

投稿润色
补充资料

中图分类号:O436

DOI:10.7510/jgjs.issn.1001-3806.2018.01.014

所属栏目:激光与光电子技术应用

基金项目:中央高校基本科研业务费资助项目(WUT: 2016-IA-008)

收稿日期:2017-03-31

修改稿日期:2017-05-09

网络出版日期:--

作者单位    点击查看

毋飞鹏:武汉理工大学 理学院 物理系, 武汉 430070
张 波:武汉理工大学 理学院 物理系, 武汉 430070
刘子龙:武汉理工大学 理学院 物理系, 武汉 430070
唐 禹:武汉理工大学 理学院 物理系, 武汉 430070

联系人作者:刘子龙(zlliu_72@whut.edu.cn)

备注:毋飞鹏(1991-), 男, 硕士研究生, 主要从事光镊技术的研究。

【1】ASHKIN A. Acceleration and trapping of particles by radiation pressure[J]. Physical Review Letters, 1970, 24(4): 156-159.

【2】ASHKIN A, DZIEDZIC J M, BJORKHOLM J E, et al. Observation of a single-beam gradient force optical trap for dielectric particles[J]. Optics Letters, 1986, 11(5): 288-290.

【3】CHU S. Laser manipulation of atoms and particles[J]. Science, 1991, 253(5022): 861-866.

【4】BLOCK S M. Making light work with optical tweezers[J]. Nature, 1992, 360(6403): 493-495.

【5】YIN H, WANG M D, SVOBODA K, et al. Transcription against an applied force[J]. Science, 1995, 270(5242): 1653-1657.

【6】GRIMBERGEN J A, VISSCHER K, GOMES de MESQUITA D S, et al. Isolation of single yeast cells by optical trapping[J]. Yeast, 1993, 9(7): 723-732.

【7】WU J G, LI Y M, LU D, et al. Measurement of the membrane elasticity of red blood cell with osmotic pressure by optical tweezers[J]. Cryoletters, 2009, 30(2): 89-95.

【8】WEN J D, LANCASTER L, HODGES C, et al. Following translation by single ribosomes one codon at a time[J]. Nature, 2008, 452(7187): 598-603.

【9】BLOCK S M, GOLDSTEIN L S,SCHNAPP B J. Bead movement by single kinesin molecules studied with optical tweezers[J]. Nature, 1990, 348(6299): 348-352.

【10】WEI Y. Measurement of viscosity coefficient of liquid micro-area with laser optical tweezers[J]. Laser Technology, 2016, 40(5): 738-741(in Chinese).

【11】ASHKIN A. Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime[J]. Biophysical Journal, 1992, 61(2): 569-582.

【12】HARADA Y, ASAKURA T. Radiation forces on a dielectric sphere in the rayleigh scattering regime[J]. Optics Communications, 1996, 124(5/6): 529-541.

【13】CHEN J, NG J, WANG P, et al. Analytical partial wave expansion of vector bessel beam and its application to optical binding[J]. Optics Letters, 2010, 35(10): 1674-1676.

【14】CHEN J, NG J, WANG P, et al. Analytical partial wave expansion of vector bessel beam and its application to optical binding: erratum [J]. Optics Letters, 2011, 36(7): 1243-1243.

【15】YANG M, WU Y, REN K F, et al. Computation of radiation pressure force exerted on arbitrary shaped homogeneous particles by high-order bessel vortex beams using mlfma[J]. Optics Express, 2016, 24(24): 27979-27992.

【16】MILNE G, DHOLAKIA K, MCGLOIN D, et al. Transverse particle dynamics in a bessel beam[J]. Optics Express, 2007, 15(21): 13972-13987.

【17】WATERMAN P C. Matrix formulation of electromagnetic scattering[J]. Proceedings of the IEEE, 1965, 53(8): 805-812.

【18】WATERMAN P C. Symmetry, unitarity, and geometry in electromagnetic scattering[J]. Physical Review, 1971, D3(4): 825-839.

【19】PETERSON B,STROM S. T-matrix formulation of electromagnetic scattering from multilayered scatterers[J]. Physical Review, 1974, D10(8): 2670-2684.

【20】YAN Sh H,YAO B L. Transverse trapping forces of focused gaussian beam on ellipsoidal particles[J]. Journal of the Optical Society of America, 2007, B24(7): 1596-1602.

【21】BAREIL P B,SHENG Y. Angular and position stability of a nanorod trapped in an optical tweezers[J]. Optics Express, 2010, 18(25): 26388-26398.

【22】NIEMINEN T A, LOKE V L Y, STILGOE A B, et al. Optical tweezers computational toolbox[J]. Journal of Optics, 2007, A9(8): S196-S203.

【23】MISHCHENKO M I, TRAVIS L D,LACIS A A, Scattering, absorption, and emission of light by small particles[M].New York,USA: Cambridge University Press, 2002: 115-190.

【24】ZHAN Q. Radiation forces on a dielectric sphere produced by highly focused cylindrical vector beams[J]. Journal of Optics, 2003, A5(3): 229-232.

【25】KAWAUCHI H, YONEZAWA K, KOZAWA Y, et al. Calculation of optical trapping forces on a dielectric sphere in the ray optics regime produced by a radially polarized laser beam[J]. Optics Letters, 2007, 32(13): 1839-1841.

引用该论文

WU Feipeng,ZHANG Bo,LIU Zilong,TANG Yu. Calculation of trapping force on double-layer spherical particles using T matrix method[J]. Laser Technology, 2018, 42(1): 72-77

毋飞鹏,张 波,刘子龙,唐 禹. T矩阵方法计算双层球形粒子的受力[J]. 激光技术, 2018, 42(1): 72-77

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF