首页 > 论文 > 中国激光 > 45卷 > 2期(pp:207004--1)

并行谱域光学相干层析成像技术的研究进展

Research Progress on Parallel Spectral Domain Optical Coherence Tomography Technology

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

介绍了并行谱域光学相干层析成像(PSD-OCT)技术,重点报道了丁志华课题组在PSD-OCT的方法与系统研制方面取得的研究进展,包括基于全局优化的大视场PSD-OCT系统、基于复干涉信号与相位信息的真伪缺陷识别方法及基于空间光谱编码与重叠数据互相关算法的运动伪影校正方法。利用所建立的PSD-OCT系统,可实现玻璃表面及内部缺陷的检测,避免伪缺陷的误判。通过引入空间光谱编码单元,该系统还可校正非受控运动。

Abstract

Parallel spectral domain optical coherence tomography (PSD-OCT) technology is introduced. Research progresses on the method and system development of PSD-OCT in Zhihua Ding′s group are mainly reported, which includes the wild-field PSD-OCT system based on global optimization, the discrimination method for real and fake defects based on the complex interference signal and phase information, and the approach for correcting motion artifacts based on the spatial-spectral encoding and overlapped data correlation algorithm. The established PSD-OCT system can be used to identify the surface and internal defects of glass, which avoids the misjudgment of fake defects. With the introduction of spatial-spectral encoding units, this system can also be used to correct uncontrolled motions.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN247

DOI:10.3788/cjl201845.0207004

所属栏目:“生物医学光子学新技术及进展”专题

基金项目:国家863计划(2015AA020515)、国家自然科学基金(61335003,61327007,11404285,61475143)、中国博士后科学基金(2016M601935)

收稿日期:2017-08-11

修改稿日期:2017-09-19

网络出版日期:--

作者单位    点击查看

沈毅:浙江大学光电科学与工程学院, 现代光学仪器国家重点实验室, 浙江 杭州 310027
陈志彦:浙江大学光电科学与工程学院, 现代光学仪器国家重点实验室, 浙江 杭州 310027
邱建榕:浙江大学光电科学与工程学院, 现代光学仪器国家重点实验室, 浙江 杭州 310027
丁志华:浙江大学光电科学与工程学院, 现代光学仪器国家重点实验室, 浙江 杭州 310027

联系人作者:丁志华(zh_ding@zju.edu.cn)

备注:沈毅(1984—),男,博士后,主要从事生物医学光学方面的研究。E-mail: yi_shen@zju.edu.cn

【1】Swanson E A,Izatt J A, Hee M R, et al. In-vivo retinal imaging by optical coherence tomography[J]. Optics Letters, 1993, 18(21): 1864-1866.

【2】Kobayashi K, Izatt J A, Kulkarni M D, et al. High-resolution cross-sectional imaging of the gastrointestinal tract using optical coherence tomography: preliminary results[J]. Gastrointestinal Endoscopy, 1998, 47(6): 515-523.

【3】Jang I K, Tearney G, Bouma B. Visualization of tissue prolapse between coronary stent struts by optical coherence tomography[J]. Circulation, 2001, 104(22): 2754-2754.

【4】Shen Y, Ding Z, Yan Y, et al. Extended range phase-sensitive swept source interferometer for real-time dimensional metrology[J]. Optics Communications, 2014, 318: 88-94.

【5】Alarousu E, Alsaggaf A, Jabbour G E. Online monitoring of printed electronics by spectral-domain optical coherence tomography[J]. Scientific Reports, 2013, 3: 1562.

【6】Markl D, Ziegler J, Hannesschlger G, et al. Real-time data processing for in-line monitoring of a pharmaceutical coating process by optical coherence tomography[C]. SPIE , 2014, 9129: 91290M.

【7】Choi W J, Jung S P, Shin J G, et al. Characterization of wet pad surface in chemical mechanical polishing (CMP) process with full-field optical coherence tomography (FF-OCT)[J]. Optics Express, 2011, 19(14): 13343-13350.

【8】Shen Y, Chen Z, Bao W, et al. Amplified phase measurement of thin-film thickness by swept-source spectral interferometry[J]. Optics Communications, 2015, 355: 562-566.

【9】Potsaid B, Gorczynska I, Srinivasan V J, et al. Ultrahigh speed spectral/Fourier domain OCT ophthalmic imaging at 70000 to 312500 axial scans per second[J]. Optics Express, 2008, 16(19): 15149-15169.

【10】Wieser W, Biedermann B R, Klein T, et al. Multi-megahertz OCT: high quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second[J]. Optics Express, 2010, 18(14): 14685-14704.

【11】Barrick J,Doblas A, Gardner M R, et al. High-speed and high-sensitivity parallel spectral-domain optical coherence tomography using a supercontinuum light source[J]. Optics Letters, 2016, 41(24): 5620-5623.

【12】Kumar M, Islam M N, Terry F L, et al. High resolution line scan interferometer for solder ball inspection using a visible supercontinuum source[J]. Optics Express, 2010, 18(21): 22471-22484.

【13】Huang B, Bu P, Wang X,et al. Full-range parallel Fourier-domain optical coherence tomography using a spatial carrier frequency[J]. Applied Optics, 2013, 52(5): 958-965.

【14】Chen Z, Zhao C, Shen Y,et al. Ultrawide-field parallel spectral domain optical coherence tomography for nondestructive inspection of glass[J]. Optics Communications, 2015, 341: 122-130.

【15】Grajciar B, Pircher M, Fercher A, et al. Parallel Fourier domain optical coherence tomography for in vivo measurement of the human eye[J]. Optics Express, 2005, 13(4): 1131-7.

【16】Fechtig D J, Schmoll T, Grajciar B, et al. Line-field parallel swept source interferometric imaging at up to 1 MHz[J]. Optics Letters, 2014, 39(18): 5333-5336.

【17】Holmes J D. Inspection of float glass using a novel retroreflective laser scanning system[C]. SPIE, 1997, 3131: 180-190.

【18】Liu H G, Chen Y P, Peng X Q,et al. A classification method of glass defect based on multiresolution and information fusion[J]. The International Journal of Advanced Manufacturing Technology, 2011, 56(9/10/11/12): 1079-1090.

【19】Chen Z, Shen Y, Bao W, et al. Identification of surface defects on glass by parallel spectral domain optical coherence tomography[J]. Optics Express, 2015, 23(18): 23634-23646.

【20】Chen Z, Shen Y, Bao W, et al. Motion correction using overlapped data correlation based on a spatial-spectral encoded parallel optical coherence tomography[J]. Optics Express, 2017, 25(6): 7069-7083.

【21】Pircher M, Baumann B, Goetzinger E, et al. Simultaneous SLO/OCT imaging of the human retina with axial eye motion correction[J]. Optics Express, 2007, 15(25): 16922-16932.

【22】Lee J, Srinivasan V, Radhakrishnan H, et al. Motion correction for phase-resolved dynamic optical coherence tomography imaging of rodent cerebral cortex[J]. Optics Express, 2011, 19(22): 21258-21270.

引用该论文

Shen Yi,Chen Zhiyan,Qiu Jianrong,Ding Zhihua. Research Progress on Parallel Spectral Domain Optical Coherence Tomography Technology[J]. Chinese Journal of Lasers, 2018, 45(2): 0207004

沈毅,陈志彦,邱建榕,丁志华. 并行谱域光学相干层析成像技术的研究进展[J]. 中国激光, 2018, 45(2): 0207004

被引情况

【1】 孔梦龙, 谭中伟, 张琳. 基于光纤的光学傅里叶变换实现方法及应用. 激光与光电子学进展, 2019, 56(11): 110701--1

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF