首页 > 论文 > 光学学报 > 38卷 > 2期(pp:215001--1)

基于显著区域的立体图像舒适对比度范围的测量

Measurement of Comfortable Contrast Range of Stereo Image Based on Salient Region

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

结合视觉注意机制, 通过大量主观实验, 定量研究了对比度因素对立体图像视觉舒适度的影响。首先结合平面显著图和立体视差图获得立体显著度图, 再利用模糊隶属度和掩模对其进行优化, 获得显著立体图像, 并用眼动仪验证其合理性;然后对左右视图进行对比度变换和主观实验, 数据筛选后得到显著立体图像的舒适对比度匹配图和差异图。实验结果表明:左右视图的对比度差异门限值随着左视图对比度值的不同而改变, 且左右视图对比度差异不能过大, 最大和最小差异值分别为1.97和-2.40。实验所得舒适对比度范围很好地反映了立体图像的舒适度, 验证实验的正确率达95%, 为立体内容的制作提供了更合理可行的定量标准。

Abstract

Combined with the visual attention mechanism, the influence of contrast factor on visual comfort of stereo image is studied quantitatively through a large number of subjective experiments. First, a stereo salient degree map is derived from stereo disparity map and planar salient map. It is optimized through fuzzy membership degree and mask, and the salient stereoscopic images can be obtained. An eye tracker is used to verify its rationality. Then, a series of subjective experiments are conducted after contrast conversion of left and right views. Finally, the comfortable contrast matching map and difference map are obtained after data screening. The experimental results show that the contrast difference thresholds of left and right view change with different left view contrasts, and the contrast difference should not be too large. The maximum and minimum difference values are 1.97 and -2.40, respectively. The obtained comfortable contrast ranges reflect the comfort of stereo image better, and the correct rate reaches 95%, which provides more reasonable and feasible quantitative standards for the making of stereo contents.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TP391.41

DOI:10.3788/aos201838.0215001

所属栏目:机器视觉

基金项目:国家自然科学基金(61002080)

收稿日期:2017-08-10

修改稿日期:2017-09-24

网络出版日期:--

作者单位    点击查看

胡佳洁:天津大学电气自动化与信息工程学院, 天津 300072
李素梅:天津大学电气自动化与信息工程学院, 天津 300072
常永莉:天津大学电气自动化与信息工程学院, 天津 300072
朱兆琪:天津大学电气自动化与信息工程学院, 天津 300072
侯春萍:天津大学电气自动化与信息工程学院, 天津 300072

联系人作者:李素梅(lisumei@tju.edu.cn)

备注:胡佳洁(1995-),女,硕士研究生,主要从事立体图像质量评价方面的研究。E-mail: 13702000775@163.com

【1】Yano S, Emoto M, Mitsuhashi T. Two factors in visual fatigue caused by stereoscopic HDTV images[J]. Displays, 2004, 25(4): 141-150.

【2】Yano S, Ide S, Mitsuhashi T, et al. A study of visual fatigue and visual comfort for 3D HDTV/HDTV images[J]. Displays, 2002, 23(4): 191-201.

【3】Lambooij M, Ijsselsteijn W, Heynderickx A I. Stereoscopic displays and visual comfort: A review[M]. Einhoven: Einhoven University of Technology Einhoven Univeristy of Technology Philips Research, 2007.

【4】Zheng H D, Yu Y J, Cheng W M. A review on three-dimensional display techniques[J]. Optical Technique, 2008, 34(3): 426-434.
郑华东, 于瀛洁, 程维明. 三维立体显示技术研究新进展[J]. 光学技术, 2008, 34(3): 426-434.

【5】Pan H, Daly S. 3D video disparity scaling for preference and prevention of discomfort[C]. SPIE, 2011, 7863: 786306.

【6】Jincheol P, Heeseok O, Lee S, et al. 3D visual discomfort predictor: Analysis of horizontal disparity and neural activity statistics[J]. IEEE Transactions on Image Processing, 2015, 24(3): 1101-1104.

【7】Xia Z P, Cheng C. Steroescopic display image depth adjustment based on visual saliency[J]. Acta Optica Sinica, 2017, 37(1): 0133001.
夏振平, 程成. 基于视觉显著性的立体显示图像深度调整[J]. 光学学报, 2017, 37(1): 0133001.

【8】Liu C, Li S M, Zhu D, et al. Quantitative research of the hue parameter influence on the visual comfort of stereoscopic images[J]. Journal of Optoelectronics·Laser, 2014, 25(1): 178-185.
刘畅, 李素梅, 朱丹, 等. 色度对立体图像视觉舒适度影响的定量研究[J]. 光电子·激光, 2014, 25(1): 178-185.

【9】International Organization for Standardization.Image safety: Reducing the incidence of undesirable biomedical effects caused by visual image sequences[S]. Switzerland: ISO Copyright Office IHS, 2005.

【10】Chen J, Zhou J, Sun J, et al. Visual discomfort prediction on stereoscopic 3D images without explicit disparities[J]. Image Communication, 2017, 51: 50-60.

【11】So G J, Kim S H, Kim J Y. Evaluation model of the visual fatigue on the 3D stereoscopic video[J]. International Journal of Computer and Engineering, 2016, 8(4): 336-342.

【12】Liu C, Li S M. Measurement of contrast range affecting comfort of stereoscopic images[J]. Journal of Optoelectronics·Laser, 2014, 25(4): 748-755.
刘畅, 李素梅. 影响立体图像舒适度的对比度范围的测定[J]. 光电子·激光, 2014, 25(4): 748-755.

【13】Jung C, Wang S. Visual comfort assessment in stereoscopic 3D images using salient objectdisparity[J]. Electronics Letters, 2015, 51(6): 482-484.

【14】Korea Advanced Institute of Science and Technology. IVY Lab stereoscopic image database[OL]. [2013-03-12]. http: ∥ivylab.kaist.ac.kr/demo/3DVCA/3DVCA.html.

【15】ITU-R. Recommendation ITU-R BT.1438. Subjective assessment of stereoscopic television pictures[S]. Geneva: ITU-R, 2000: 1-14.

【16】Ma L S. Application of Grubbs test in equipment comparison test[J]. Opencast Mining Technology, 2014(4): 62-64.
马立爽. 格鲁布斯检验法在设备比对试验中的应用[J]. 露天采矿技术, 2014(4): 62-64.

【17】Beijing Technology Quality Control Office. DBII/T384.5-2009, Image information management system technical: Image quality requirements and evaluation methods[S]. Beijing: China Standards Press, 2009.
北京市质量技术监督局. DBII/T384.5-2009图像信息管理系统技术规范第5部分: 图像质量要求与评价方法[S]. 北京: 中国标准出版社, 2009.

【18】Harel J, Christof K, Perona P. Graph-based visual saliency[J]. Advances in Neural Information Processing Systems, 2007, 19: 545-552.

【19】Wang J, Da Silva M P, LeCallet P, et al. Computational model of stereoscopic 3D visual saliency[J]. IEEE Transactions on Image Processing, 2013, 22(6): 2151-2165.

【20】Schlkopf B, Platt J, Hofmann T. Graph-Based visual saliency[J]. Advances in Neural Information Processing Systems, 2007, 19: 545-552.

【21】Christoph R, Asmaa H, Michael B, et al. Fast cost-volume filtering for visual correspondence and beyond[C]. Computer Vision and Pattern Recognition (CVPR), 2011: 3017-3024.

【22】Li Z M. Research on image segmentation algorithm based on fuzzy clustering[D]. Changsha: Hunan University, 2009.
李志梅. 基于模糊聚类的图像分割算法研究[D]. 长沙: 湖南大学, 2009.

【23】Jiang Q P, Shao F, Jiang G Y, et al. An objective stereoscopic image visual comfort assessment metric based on visual important regions[J]. Chinese Journal of Electronics and Information Technology, 2014, 36(4): 875-881.
姜求平, 邵枫, 蒋刚毅, 等. 基于视觉重要区域的立体图像视觉舒适度客观评价方法[J]. 电子与信息学报, 2014, 36(4): 875-881.

【24】Yu W J. The research of image segmentation method based on improved adaptive genetic algorithm and out method[D]. Haikou: Hainan University, 2012.
余文姣. 基于改进遗传算法的最大类间方差图像分割方法研究[D]. 海南: 海南大学, 2012.

【25】Liu C. Quantitative analysis and assessment research on factors influencing the visual comfort of stereoscopic image[D]. Tianjin: Tianjin University, 2014.
刘畅. 立体图像舒适度的定量分析及评价研究[D]. 天津: 天津大学, 2014.

【26】Ming J, Xu H F, Yang Y. Research of space similarity analysis model with Weber-Fechner law[J]. Journal of University of Science and Technology of China, 2010, 40(11): 1148-1152.
明军, 许会芳, 杨杨. Weber-Fechner空间相似分解模型的研究[J]. 中国科学技术大学学报, 2010, 40(11): 1148-1152.

【27】Hou X, Zhang L. Saliency detection: A spectral residual approach[C]. IEEE Conference on Computer Vision and Pattern Recognition, 2007: 9738156.

【28】Yang Y R, Dai Y. Evaluation of the effect on eye aberration on retinal imaging quality based on the root mean square error and correlation coefficient[J]. Acta Optica Sinica, 2017, 37(3): 0333001.
杨彦荣, 戴云. 基于均方根误差和相关系数评价人眼像差对视网膜像质的影响[J]. 光学学报, 2017, 37(3): 0333001.

【29】Johnson G M, Fairchild M D. A top down description of S-CIELAB and CIEDE2000[J]. Color Research & Application, 2010, 28(6): 425-435.

引用该论文

Hu Jiajie,Li Sumei,Chang Yongli,Zhu Zhaoqi,Hou Chunping. Measurement of Comfortable Contrast Range of Stereo Image Based on Salient Region[J]. Acta Optica Sinica, 2018, 38(2): 0215001

胡佳洁,李素梅,常永莉,朱兆琪,侯春萍. 基于显著区域的立体图像舒适对比度范围的测量[J]. 光学学报, 2018, 38(2): 0215001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF