首页 > 论文 > 光学学报 > 38卷 > 2期(pp:222001--1)

高光谱分辨率紫外Offner成像光谱仪系统设计

Design of Hyperspectral Resolution Ultraviolet Offner Imaging Spectrometer System

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

紫外成像光谱仪是遥感探测仪器的重要组成部分之一。在机载和星载领域, 遥感平台正逐步要求光谱仪在实现高分辨率的同时, 其设备趋于轻量化和小型化。针对紫外成像光谱仪高光谱分辨率、轻量化、小型化等特点, 研究了基于Offner结构的紫外成像光谱系统, 设计了一种工作波段为250~400 nm、狭缝长40 mm、光谱分辨率为0.3 nm的高分辨率紫外成像光谱仪, 并对设计结果进行了分析与评价。结果表明, 这种紫外成像光谱仪在38.5 lp/mm处调制传递函数达到0.76以上, 实现了接近衍射极限的优良成像质量;谱线弯曲和色畸变在像元尺寸的10%以内。另外, 该结构在原Offner结构的基础上大大缩小了系统体积, 实现了紫外遥感仪器小型化、轻量化的目的, 且易于加工和装调, 满足设计指标要求, 适合机载和星载遥感应用。

Abstract

Ultraviolet (UV) imaging spectrometer is one of the most important parts of remote sensing instruments. In the field of airborne and satellite-borne, remote sensing platforms are increasingly requiring that spectrometers be lightweight and miniaturized while achieving high resolution. Aiming at the characteristics of high spectral resolution, light weight and miniaturization of UV imaging spectrometer, the UV imaging spectroscopy system based on Offner structure is studied. The high-resolution UV imaging spectrometer with operating wavelength range of 250-400 nm, the slit length of 40 mm, the spectral resolution of 0.3 nm is designed, and the design results are analyzed and evaluated. The results show that this UV imaging spectrometer achieves a modulation transfer function above 0.76 at 38.5 lp/mm, and it realizes excellent image quality near the diffraction limit. Keystone and smile are within 10% of pixel size. In addition, the structure greatly reduces the system volume based on the original Offner structure, which realizes the miniaturization and weight reduction of the ultraviolet remote sensing instrument. It is easy to be processed and adjusted, which meets the design requirements. And it is suitable for airborne and spaceborne remote sensing applications.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TH744

DOI:10.3788/aos201838.0222001

所属栏目:光学设计与制造

基金项目:国家自然科学基金(40776100)

收稿日期:2017-08-17

修改稿日期:2017-09-14

网络出版日期:--

作者单位    点击查看

朱雨霁:中国科学院上海技术物理研究所, 上海 200083中国科学院红外探测与成像技术重点实验室, 上海 200083中国科学院大学, 北京 100049
尹达一:中国科学院上海技术物理研究所, 上海 200083中国科学院红外探测与成像技术重点实验室, 上海 200083中国科学院大学, 北京 100049
陈永和:中国科学院上海技术物理研究所, 上海 200083中国科学院红外探测与成像技术重点实验室, 上海 200083
任百川:中国科学院上海技术物理研究所, 上海 200083中国科学院红外探测与成像技术重点实验室, 上海 200083

联系人作者:朱雨霁(yuji-zhu@163.com)

备注:朱雨霁(1990-), 女, 博士研究生, 主要从事紫外成像光谱仪、积分视场技术方面的研究。E-mail: yuji-zhu@163.com

【1】Zheng Y Q, Gao Z L. Optical system design of CO2 sounder[J]. Optics and Precision Engineering, 2012, 20(12): 2645-2653.
郑玉权, 高志良. CO2探测仪光学系统设计[J]. 光学 精密工程, 2012, 20(12): 2645-2653.

【2】Wang B H, Ruan N J, Guo C L, et al. Optical system design of airborne light and compact high resolution imaging spectrometer[J]. Acta Optica Sinica, 2015, 35(10): 1022001.
王保华, 阮宁娟, 郭崇岭, 等. 机载轻小型高分辨率成像光谱仪光学系统设计[J]. 光学学报, 2015, 35(10): 1022001.

【3】Hao A H, Hu B L, Bai J G, et al. Design of airborne dual channel ultraviolet-visible imaging spectrometer with large field of view, wide spectrum, and high resolution[J]. Spectroscopy and Spectral Analysis, 2013, 33(12): 3432-3436.
郝爱花, 胡炳樑, 白加光, 等. 大视场宽谱段高分辨率分波段机载紫外-可见光成像光谱仪设计[J]. 光谱学与光谱分析, 2013, 33(12): 3432-3436.

【4】Topping M Q, Pfeiffer J E, Sparks A W, et al. Advanced airborne hyperspectral imaging system[C]. SPIE, 2002, 4816: 1-11.

【5】Davis C O, Bowles J, Leathers R A, et al. Ocean PHILLS hyperspectral imager: design, characterization, and calibration[J]. Optics Express, 2002, 10(4): 210-221.

【6】Burrows J P, Weber M, Buchwitz M, et al. The global ozone monitoring experiment (GOME): mission concept and first scientific results corresponding author[J]. Journal of the Atmospheric Sciences, 1999, 56(2): 151-175.

【7】Bovensmann H, Burrows J P, Buchwitz M, et al. SCIAMACHY: mission objectives and measurement modes[J]. Journal of the Atmospheric Sciences, 1999, 56(2): 127-150.

【8】Liu Y J, Cui J C, Bayanheshig, et al. Design and application of imaging spectrometer with convex grating[J]. Optics and Precision Engineering, 2012, 20(1): 52-57.
刘玉娟, 崔继承, 巴音贺希格, 等. 凸面光栅成像光谱仪的研制与应用[J]. 光学 精密工程, 2012, 20(1): 52-57.

【9】Li F. Research on performance and theoptical system of ultraviolet imaging spectrometer with dispersion[D]. Beijing: Beijing Institute of Technology, 2015.
李飞. 新型色散型紫外成像光谱仪光学系统设计与性能测试[D]. 北京: 北京理工大学, 2015.

【10】Cui T W, Ma Y, Zhang J. The development and applications of the airborne hyperspectral remote sensing[J]. Remote Sensing Technology and Application, 2003, 18(2): 118-122.
崔廷伟, 马毅, 张杰. 航空高光谱遥感的发展与应用[J]. 遥感技术与应用, 2003, 18(2): 118-122.

【11】Zheng Y Q, Yu B X. Overview of spectrum-dividing technologies in imaging spectrometers[J]. Journal of Remote Sensing, 2002, 6(1): 75-80.
郑玉权, 禹秉熙. 成像光谱仪分光技术概览[J]. 遥感学报, 2002, 6(1): 75-80.

【12】Wang H B, Liu Q, Wu J H. Fabrication of convex blazed grating by Ar+ ion-beam etching[J]. Acta Optica Sinica, 2011, 31(4): 0405002.
汪海宾, 刘全, 吴建宏. Ar+离子束刻蚀制作凸面闪耀光栅[J]. 光学学报, 2011, 31(4): 0405002.

【13】Kim S H, Kong J K, Ku H. Analytical design of a hyper-spectral imaging spectrometer utilizing a convex grating[C]. SPIE, 2012, 8515: 85150V.

【14】Mertz L. Concentric spectrographs[J]. Applied Optics, 1977, 16(12): 3122-3124.

【15】Huang Y S, Ni Z J. Research of the concentric three-reflection optical system[J]. Optical Instruments, 2005, 27(2): 42-46.
黄元申, 倪争技. 同心三反射镜光学系统研究[J]. 光学仪器, 2005, 27(2): 42-46.

【16】Prieto-Blanco X, Montero-Orille C, Couce B, et al. Analytical design of an Offner imaging spectrometer[J]. Optics Express, 2006, 14(20): 9156-9168.

【17】Kaiser S, Sang B, Schubert J, et al. Compact prism spectrometer of pushbroom type for hyperspectral imaging[C]. SPIE, 2008, 7100: 710014.

引用该论文

Zhu Yuji,Yin Dayi,Chen Yonghe,Ren Baichuan. Design of Hyperspectral Resolution Ultraviolet Offner Imaging Spectrometer System[J]. Acta Optica Sinica, 2018, 38(2): 0222001

朱雨霁,尹达一,陈永和,任百川. 高光谱分辨率紫外Offner成像光谱仪系统设计[J]. 光学学报, 2018, 38(2): 0222001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF