首页 > 论文 > 中国激光 > 45卷 > 3期(pp:307001--1)

多样本光学相干血流运动造影技术及应用

Mass Sample Optical Coherence Tomography Angiography Technology and Application

李培   李鹏  
  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

血流是衡量机体生理功能和病理状态的重要指标,血流检测需要一种有效的、活体、无标记、毛细血管水平的三维血流灌注成像手段。光学相干血流运动造影(OCTA)技术将血红细胞与周围组织的相对运动作为内源性的血流标记特征,取代常规外源性的荧光标记物。综合利用光学低相干技术的空间散射信号收集能力以及动态光学散射技术的运动识别能力,在三维空间中识别动态血流区域,剔除静态周围组织,实现一种活体、无标记、三维光学血流运动造影,快速获取毛细血管水平的血流灌注形态结构与生理功能信息。针对多样本OCTA技术进行了系统性的回顾,主要包括无标记血流造影的运动对比度机制,微小血流运动高灵敏度检测方法,独立多样本的高效并行采集策略,以及该技术在脑皮层血流成像中的应用研究。

Abstract

Blood flow is the vital indicator to measure the body′s physiological functions and pathological condition. Blood flow testing requires an effective, live, unmarked, capillary level three-dimensional blood flow perfusion weighted imaging approach. Optical coherence tomography angiography (OCTA) technique uses the relative motion of red blood cells and the surrounding tissue as an endogenous marker of blood flow to replace conventional exogenous fluorescent markers. The spatial scattering signal acquisition capability of the optical low-coherence and the motion recognition capabilities of the dynamic optical scattering technology are comprehensively utilized to identify dynamic blood flow area in three-dimensional space, exclude the static surrounding tissue, achieve a living, unmarked, three-dimensional optical blood flow angiography, and obtain capillary blood flow perfusion morphology structure and physiological function information of the capillary level rapidly. This paper systematically reviews the mass sample OCTA technique that primarily includes the motion contrast mechanism of unmarked blood flow angiography, a detection method for high-sensitive tiny blood flow motion, an effective strategy for parallel acquisition of independent mass samples, and the application research of this technique on cortex blood flow imaging.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN247

DOI:10.3788/cjl201845.0307001

所属栏目:“生物医学光子学新技术及进展”专题

基金项目:国家973计划(2015AA020515)、国家自然科学基金(61475143,11404285,61335003,61327007)、浙江省科技厅公益技术研究社会发展项目(2015C33108)、中央高校基本科研业务费专项资金(2017QNA5004)、教育部留学回国人员科研启动基金

收稿日期:2017-07-24

修改稿日期:2017-08-28

网络出版日期:--

作者单位    点击查看

李培:浙江大学光电科学与工程学院现代光学仪器国家重点实验室, 浙江 杭州 310027
李鹏:浙江大学光电科学与工程学院现代光学仪器国家重点实验室, 浙江 杭州 310027

联系人作者:李鹏(peng_li@zju.edu.cn)

备注:李培(1992-),男,硕士研究生,主要从事光学相干层析成像方面的研究。E-mail: zju_lipei@zju.edu.cn

【1】Meyer E P, Ulmann-Schuler A, Staufenbiel M, et al. Altered morphology and 3D architecture of brain vasculature in a mouse model for Alzheimer''s disease[C]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(9): 3587-3592.

【2】Vakoc B J, Lanning R M, Tyrrell J A, et al. Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging[J]. Nature Medicine, 2009, 15(10): 1219-1223.

【3】Jain R K. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy[J]. Science, 2005, 307(5706): 58-62.

【4】Carmeliet P, Jain R K. Angiogenesis in cancer and other diseases[J]. Nature, 2000, 407(6801): 249-257.

【5】Gao S S, Jia Y L, Zhang M, et al. Optical coherence tomography angiography[J]. Investigative Ophthalmology & Visual Science, 2016, 57(9): Oct27-Oct36.

【6】Spaide R F, Fujimoto J G, Waheed N K. Image artifacts in optical coherence tomography angiography[J]. Retina, 2015, 35(11): 2163-2180.

【7】Zhang A Q, Zhang Q Q, Chen C L, et al. Methods and algorithms for optical coherence tomography-based angiography: a review and comparison[J]. Journal of Biomedical Optics, 2015, 20(10): 100901.

【8】Wang R K, Jacques S L, Ma Z, et al. Three dimensional optical angiography[J]. Optics Express, 2007, 15(7): 4083-4097.

【9】Mariampillai A, Standish B A, Moriyama E H, et al. Speckle variance detection of microvasculature using swept-source optical coherence tomography[J]. Optics Letters, 2008, 33(13): 1530-1532.

【10】Enfield J, Jonathan E, Leahy M. In vivo imaging of the microcirculation of the volar forearm using correlation mapping optical coherence tomography (cmOCT)[J]. Biomedical Optics Express, 2011, 2(5): 1184-1193.

【11】Jia Y L, Tan O, Tokayer J, et al. Split-spectrum amplitude-decorrelation angiography with optical coherence tomography[J]. Optics Express, 2012, 20(4): 4710-4725.

【12】Makita S, Hong Y, Yamanari M, et al. Optical coherence angiography[J]. Optics Express, 2006, 14(17): 7821-7840.

【13】Yu L, Chen Z. Doppler variance imaging for three-dimensional retina and choroid angiography[J]. Journal of Biomedical Optics, 2010, 15(1): 016029.

【14】Fingler J, Schwartz D, Yang C, et al. Mobility and transverse flow visualization using phase variance contrast with spectral domain optical coherence tomography[J]. Optics Express, 2007, 15(20): 12636-12653.

【15】Wang R K, An L, Francis P, et al. Depth-resolved imaging of capillary networks in retina and choroid using ultrahigh sensitive optical microangiography[J]. Optics Letters, 2010, 35(9): 1467-1469.

【16】Guo L, Li P, Pan C, et al. Improved motion contrast and processing efficiency in OCT angiography using complex-correlation algorithm[J]. Journal of Optics, 2016, 18(2): 025301.

【17】Li P, Cheng Y X, Li P, et al. Hybrid averaging offers high-flow contrast by cost apportionment among imaging time, axial, and lateral resolution in optical coherence tomography angiography[J]. Optics Letters, 2016, 41(17): 3944-3947.

【18】Li P, Cheng Y X, Zhou L P, et al. Single-shot angular compounded optical coherence tomography angiography by splitting full-space B-scan modulation spectrum for flow contrast enhancement[J]. Optics Letters, 2016, 41(5): 1058-1061.

【19】Barton J, Stromski S. Flow measurement without phase information in optical coherence tomography images[J]. Optics Express, 2005, 13(14): 5234-5239.

【20】Wang R K K, Zhang A Q, Choi W J, et al. Wide-field optical coherence tomography angiography enabled by two repeated measurements of B-scans[J]. Optics Letters, 2016, 41(10): 2330-2333.

【21】Gao S S, Liu G, Huang D, et al. Optimization of the split-spectrum amplitude-decorrelation angiography algorithm on a spectral optical coherence tomography system[J]. Optics Letters, 2015, 40(10): 2305-2308.

【22】Cheng Y X, Guo L, Pan C, et al. Statistical analysis of motion contrast in optical coherence tomography angiography[J]. Journal of Biomedical Optics, 2015, 20(11): 116004.

【23】Leitgeb R A, Michaely R, Lasser T, et al. Complex ambiguity-free Fourier domain optical coherence tomography through transverse scanning[J]. Optics Letters, 2007, 32(23): 3453-3455.

【24】Wang H, Rollins A M. Speckle reduction in optical coherence tomography using angular compounding by B-scan Doppler-shift encoding[J]. Journal of Biomedical Optics, 2009, 14(3): 030512.

【25】Li P, Zhou L P, Ni Y, et al. Angular compounding by full-channel B-scan modulation encoding for optical coherence tomography speckle reduction[J]. Journal of Biomedical Optics, 2016, 21(8): 086014.

【26】Zhou L P, Li P, Pan C, et al. System of label-free three-dimensional optical coherence tomography angiography with high sensitivity and motion contrast and its applications in brain science[J]. Acta Physica Sinica, 2016, 65(15): 154201.
周丽萍, 李培, 潘聪, 等. 高灵敏、高对比度无标记三维光学微血管造影系统与脑科学应用研究[J]. 物理学报, 2016, 65(15): 154201.

引用该论文

Li Pei,Li Peng. Mass Sample Optical Coherence Tomography Angiography Technology and Application[J]. Chinese Journal of Lasers, 2018, 45(3): 0307001

李培,李鹏. 多样本光学相干血流运动造影技术及应用[J]. 中国激光, 2018, 45(3): 0307001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF