首页 > 论文 > 发光学报 > 39卷 > 2期(pp:202-207)

载流子复合机制对InGaN多量子阱蓝光LED调制带宽的影响

Effect of Carrier Recombination Mechanism on Modulation Bandwidth of InGaN Multiple-quantum-wells Blue Light Emitting Diodes

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

通过设计InGaN多量子阱LED有源区的不同结构, 研究了载流子复合机制对LED调制速度的影响。结果显示, 由于窄量子阱LED的载流子空间波函数重叠几率更高, 且电子泄露效应更显著, 所以复合速率更快, 调制带宽更高。In组分为1%的InGaN量子垒LED可提高辐射复合的权重, 使得调制带宽高于GaN量子垒LED; In组分为5%时, 电子泄露和俄歇复合占据主导地位, 且由于这两种复合机制复合速率很快, 所以调制带宽显著提高。

Abstract

The effect of carrier recombination mechanism on modulation bandwidth of InGaN MQWs LED was investigated with varying MQWs structures. LED with narrow well has a faster modulation speed because of high radiative recombination rate and carrier leakage. LED sample using InGaN barrier with 1% In content has a higher modulation bandwidth than LED with GaN barrier for the reason of higher radiative recombination rate. While in the case of 5% In content, carrier leakage dominates all the recombination mechanisms and crystal defect related SRH and Auger recombination are also severe. In addition, the rate of SRH and Auger recombination is very high, which leads to fast modulation speed.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O47

DOI:10.3788/fgxb20183902.0202

所属栏目:器件制备及器件物理

基金项目:北京市科学技术委员会(Z161100002116037)资助项目

收稿日期:2017-06-01

修改稿日期:2017-09-14

网络出版日期:--

作者单位    点击查看

杨杰:中国科学院大学 材料科学与光电技术学院, 北京100049中国科学院半导体研究所 半导体照明研发中心, 北京100083
朱邵歆:中国电子信息产业发展研究院 集成电路研究所, 北京100846
闫建昌:中国科学院半导体研究所 半导体照明研发中心, 北京100083
李晋闽:中国科学院半导体研究所 半导体照明研发中心, 北京100083
王军喜:中国科学院半导体研究所 半导体照明研发中心, 北京100083

联系人作者:杨杰(jieyang@semi.ac.cn)

备注:杨杰(1991-), 女, 河北保定人, 博士研究生, 2014年于河北工业大学获得学士学位, 主要从事氮化物发光器件用于照明与通信的研究。

【1】KOMINE T, NAKAGAWA M. Fundamental analysis for visible-light communication system using LED lights [J]. IEEE Trans. Consumer Electron., 2004, 50(1):100-107.

【2】ELGALA H, MESLEH R, HAAS H. Indoor optical wireless communication: potential and state-of-the-art. [J]. IEEE Commun. Magazine, 2011, 49(9):56-62.

【3】宋小庆, 赵梓旭, 陈克伟, 等. 可见光通信应用前景与发展挑战 [J]. 激光与光电子学进展, 2015, 52(8):080004.
SONG X Q, ZHAO Z X, CHEN K W, et al.. Visible light communication: potential applications and challenges [J]. Laser Optoelectron. Prog., 2015, 52(8):080004. (in Chinese)

【4】ISO K, YAMADA H, HIRASAWA H, et al.. High brightness blue InGaN/GaN light emitting diode on nonpolar m-plane bulk GaN substrate [J]. Jpn. J. Appl. Phys., 2007, 46(36-40):L960-L962.

【5】LIN C H, CHIA Y S, YANG K, et al.. Further reduction of efficiency droop effect by adding a lower-index dielectric interlayer in a surface plasmon coupled blue light-emitting diode with surface metal nanoparticles [J]. Appl. Phys. Lett., 2014, 105(10):101106.

【6】ZHAO Y J, TANAKA S, PAN C C, et al.. High-power blue-violet semipolar (20(2)over-bar(1)over-bar) InGaN/GaN light-emitting diodes with low efficiency droop at 200 A/cm(2) [J]. Appl. Phys. Express, 2011, 4(8):082104.

【7】GUO M, GUO Z Y, HUANG J, et al.. Improvement of the carrier distribution with GaN/InGaN/AlGaN/InGaN/GaN composition-graded barrier for InGaN-based blue light-emitting diode [J]. Chin. Phys. B, 2017, 26(2):028502.

【8】LI H L, CHEN X B, GUO J Q, et al.. A 550 Mbit/s real-time visible light communication system based on phosphorescent white light LED for practical high-speed low-complexity application [J]. Opt. Express, 2014, 22(22):27203-27213.

【9】LIU Y S, SMITH D A. frequency-response of an amplitude-modulated GaAs luminescence diode [J]. Proc. IEEE, 1975, 63(3):542-544.

【10】IKEDA K, HORIUCHI S, TANAKA T, et al.. design parameters of frequency-response of GaAs-(Ga,Al)as double heterostructure LEDs for optical communications [J]. IEEE Trans. Electron Dev., 1977, 24(7):1001-1005.

【11】KIM M H, SCHUBERT M F, DAI Q, et al.. Origin of efficiency droop in GaN-based light-emitting diodes [J]. Appl. Phys. Lett., 2007, 91(18):183507.

【12】LUCIA M L, HERNANDEZ-ROJAS J L, LEON C, et al.. Capacitance measurements of pn junctions: depletion layer and diffusion capacitance contributions [J]. Eur. J. Phys., 1993, 14:86-89.

【13】CHO J, MAO A, KIM J K, et al.. Analysis of reverse tunnelling current in GaInN light-emitting diodes [J]. Electron. Lett., 2010, 46(2):156-157.

【14】SAUL R H. Recent advances in the performance and reliability of InGaAsP LEDs for lightwave communication-systems [J]. IEEE Trans. Electron Dev., 1983, 30(4):285-295.

【15】TIEN P L, DENTAI A G. Power and modulation bandwidth of GaAs-AlGaAs high-radiance LEDs for optical communication systems [J]. IEEE J. Quant. Electron., 1978, 14(3):150-159.

【16】FRIESEN G, OSSENBRINK H A. Capacitance effects in high-efficiency cells [J]. Solar Energy Mater. Solar Cells, 1997, 48(1-4):77-83.

【17】NEE T E, WANG J C, SHEN H T, et al.. Effect of multiquantum barriers on performance of InGaN/GaN multiple-quantum-well light-emitting diodes [J]. J. Appl. Phys., 2007, 102(3):033101-1-7.

【18】LEE W, KIM M H, ZHU D, et al.. Growth and characteristics of GaInN/GaInN multiple quantum well light-emitting diodes [J]. J. Appl. Phys., 2010, 107(6):063102.

【19】LIU J P, RYOU J H, DUPUIS R D, et al.. Barrier effect on hole transport and carrier distribution in InGaN/GaN multiple quantum well visible light-emitting diodes [J]. Appl. Phys. Lett., 2008, 93(2):021102.

【20】LIN G B, MEYAARD D, CHO J, et al.. Analytic model for the efficiency droop in semiconductors with asymmetric carrier-transport properties based on drift-induced reduction of injection efficiency [J]. Appl. Phys. Lett., 2012, 100(16):161106.

【21】XIE J Q, NI X F, FAN Q, et al.. On the efficiency droop in InGaN multiple quantum well blue light emitting diodes and its reduction with p-doped quantum well barriers [J]. Appl. Phys. Lett., 2008, 93(12):121107.

引用该论文

YANG Jie,ZHU Shao-xin,YAN Jian-chang,LI Jin-min,WANG Jun-xi. Effect of Carrier Recombination Mechanism on Modulation Bandwidth of InGaN Multiple-quantum-wells Blue Light Emitting Diodes[J]. Chinese Journal of Luminescence, 2018, 39(2): 202-207

杨杰,朱邵歆,闫建昌,李晋闽,王军喜. 载流子复合机制对InGaN多量子阱蓝光LED调制带宽的影响[J]. 发光学报, 2018, 39(2): 202-207

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF